Skip to main content
Top
Published in: Fluid Dynamics 3/2020

01-05-2020

Suction Controlled Topological Transition in Laminar Juncture Flows

Authors: B. Hu, H. Zhang, M. Y. Younis

Published in: Fluid Dynamics | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of suction on the topological transition in juncture flow is studied experimentally and numerically. A number of combinations of the positions, where suction is applied, and the flow rates are investigated and their effect on the topological transition of laminar juncture flow is assessed. It is observed that for any particular case, a combination of suction hole positions and volume flow rates can transform the most upstream surface singular point of the horseshoe vortex (HSV) system from a saddle of separation to a saddle of attachment. The topological transition at low suction rates is achieved, when the suction holes are placed close to the separation region. A better HSV control is achieved, when suction is applied close to the juncture at high suction rates. A previously proposed separation/attachment prediction method based on the mass conservation is also confirmed by analyzing the simulated results of suction-controlled and originally-generated wall saddles. The results suggest that the topological transition (separation/attachment) at each wall saddle can be accurately estimated according to the sign of a discriminant coefficient CS/A comprised of the local shear stress τw on the wall and stream-tube width n near the saddle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. L. Simpson, “Junction flows,” Annu. Rev. Fluid Mech. 33, 415 (2001). R. L. Simpson, “Junction flows,” Annu. Rev. Fluid Mech. 33, 415 (2001).
2.
go back to reference H. Zhang, B. Hu, M. Y. Younis, and H. Wang, “Investigation on existence and evolution of attachment saddle point structure of 3-D separation in juncture flow,” in Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan (2012), p. 247. H. Zhang, B. Hu, M. Y. Younis, and H. Wang, “Investigation on existence and evolution of attachment saddle point structure of 3-D separation in juncture flow,” in Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan (2012), p. 247.
3.
go back to reference G. T. Chapman, “Topological classification of flow separation on three-dimensional bodies,” AIAA Paper No. 485 (1986). G. T. Chapman, “Topological classification of flow separation on three-dimensional bodies,” AIAA Paper No. 485 (1986).
4.
go back to reference J. C. R. Hunt, C. J. Abell, J. A. Peterka, and H. Woo, “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” J. Fluid Mech. 86, 179 (1978).ADSCrossRef J. C. R. Hunt, C. J. Abell, J. A. Peterka, and H. Woo, “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” J. Fluid Mech. 86, 179 (1978).ADSCrossRef
5.
go back to reference J. F. Foss, “Surface selections and topological constraint evaluations for flow field analyses,” Exp. Fluids 37, 883 (2004).CrossRef J. F. Foss, “Surface selections and topological constraint evaluations for flow field analyses,” Exp. Fluids 37, 883 (2004).CrossRef
6.
go back to reference H. X. Zhang, Structural Analysis of Separated Flows and Vortex Motion (National Defense Industry Press, Beijing, 2005). H. X. Zhang, Structural Analysis of Separated Flows and Vortex Motion (National Defense Industry Press, Beijing, 2005).
7.
go back to reference J. Z. Wu, H. Y. Ma, and M. D. Zhou, Vorticity and Vortex Dynamics (Springer, New York, 2005). J. Z. Wu, H. Y. Ma, and M. D. Zhou, Vorticity and Vortex Dynamics (Springer, New York, 2005).
8.
go back to reference A. Surana, O. Grunberg, and G. Haller, “Exact theory of three-dimensional flow separation. Part 1. Steady separation,” J. Fluid Mech. 564, 57 (2006).ADSMathSciNetCrossRef A. Surana, O. Grunberg, and G. Haller, “Exact theory of three-dimensional flow separation. Part 1. Steady separation,” J. Fluid Mech. 564, 57 (2006).ADSMathSciNetCrossRef
9.
go back to reference A. Surana, G. B. Jacobs, O. Grunberg, and G. Haller, “An exact theory of three-dimensional fixed separation in unsteady flows,” Phys. Fluids 20, 107101 (2008).ADSCrossRef A. Surana, G. B. Jacobs, O. Grunberg, and G. Haller, “An exact theory of three-dimensional fixed separation in unsteady flows,” Phys. Fluids 20, 107101 (2008).ADSCrossRef
10.
go back to reference A. Surana, G. B. Jacobs, and G. Haller, “Extraction of separation and attachment surfaces from three-dimensional steady shear flows,” AIAA J. 45, 1290 (2007).ADSCrossRef A. Surana, G. B. Jacobs, and G. Haller, “Extraction of separation and attachment surfaces from three-dimensional steady shear flows,” AIAA J. 45, 1290 (2007).ADSCrossRef
11.
go back to reference A. E. Perry, B. D. Fairlie, “Critical points in flow patterns,” Adv. Geophys. B 18, 299 (1974). A. E. Perry, B. D. Fairlie, “Critical points in flow patterns,” Adv. Geophys. B 18, 299 (1974).
12.
go back to reference M. J. Lighthill, Boundary Layer Theory (Clarendon, Oxford, 2005). M. J. Lighthill, Boundary Layer Theory (Clarendon, Oxford, 2005).
13.
go back to reference M. Tobak and D. J. Peake, “Topology of two-dimensional and three-dimensional separated flows,” AIAA Paper No. 1480 (1979). M. Tobak and D. J. Peake, “Topology of two-dimensional and three-dimensional separated flows,” AIAA Paper No. 1480 (1979).
14.
go back to reference B. Hu, H. Zhang, and M. Y. Younis, “Saddle point of separation/attachment and topology transition in laminar juncture flows,” J. Visualization 22, 713 (2019).CrossRef B. Hu, H. Zhang, and M. Y. Younis, “Saddle point of separation/attachment and topology transition in laminar juncture flows,” J. Visualization 22, 713 (2019).CrossRef
15.
16.
go back to reference C. M. Hung, C. H. Sung, and C. L. Chen, “Computation of saddle point of attachment,” AIAA J. 30, 1561 (1992).ADSCrossRef C. M. Hung, C. H. Sung, and C. L. Chen, “Computation of saddle point of attachment,” AIAA J. 30, 1561 (1992).ADSCrossRef
17.
go back to reference C. L. Chen, C. M. Hung, “Numerical study of juncture flows,” AIAA J. 30, 1800 (1992).ADSCrossRef C. L. Chen, C. M. Hung, “Numerical study of juncture flows,” AIAA J. 30, 1800 (1992).ADSCrossRef
18.
go back to reference D. P. Rizzetta, “Numerical simulation of turbulent cylinder juncture flow fields,” AIAA J. 32, 1113 (1994).ADSCrossRef D. P. Rizzetta, “Numerical simulation of turbulent cylinder juncture flow fields,” AIAA J. 32, 1113 (1994).ADSCrossRef
19.
go back to reference C. X. Zhang, J. X. Shi, Zh. Q. Ke, and Ch. L. Chen, “Saddle point of attachment in jet-crossflow interaction,” Theor. Comput. Fluid Dyn. 31, 391 (2017).CrossRef C. X. Zhang, J. X. Shi, Zh. Q. Ke, and Ch. L. Chen, “Saddle point of attachment in jet-crossflow interaction,” Theor. Comput. Fluid Dyn. 31, 391 (2017).CrossRef
20.
go back to reference M. D. Coon and M. Tobak, “Experimental study of saddle point of attachment in laminar juncture flow,” AIAA J. 33, 2288 (1995).ADSCrossRef M. D. Coon and M. Tobak, “Experimental study of saddle point of attachment in laminar juncture flow,” AIAA J. 33, 2288 (1995).ADSCrossRef
21.
go back to reference H. Zhang, M. Y. Younis, B. Hu, H. Wang, and X. Wang, “Investigation of attachment saddle point structure of 3-D steady separation in laminar juncture flow using PIV,” J. Visualization 15, 241 (2012).CrossRef H. Zhang, M. Y. Younis, B. Hu, H. Wang, and X. Wang, “Investigation of attachment saddle point structure of 3-D steady separation in laminar juncture flow using PIV,” J. Visualization 15, 241 (2012).CrossRef
22.
go back to reference M. Y. Younis, Zhang H, Hu B, Z. Muhammad, and S. Mehmood, “Investigation of different aspects of laminar horseshoe vortex system using PIV,” J. Mech. Sci. Technol. 28, 527 (2014).CrossRef M. Y. Younis, Zhang H, Hu B, Z. Muhammad, and S. Mehmood, “Investigation of different aspects of laminar horseshoe vortex system using PIV,” J. Mech. Sci. Technol. 28, 527 (2014).CrossRef
23.
go back to reference M. Y. Younis, H. Zhang H, B. Hu, and S. Mehmood, “Topological evolution of laminar juncture flows under different critical parameters,” Sci. China Tech. Sci. 57, 1342 (2014).CrossRef M. Y. Younis, H. Zhang H, B. Hu, and S. Mehmood, “Topological evolution of laminar juncture flows under different critical parameters,” Sci. China Tech. Sci. 57, 1342 (2014).CrossRef
24.
go back to reference B. Hu, H. Zhang, M. Y. Younis, Y. Li, and M. S. Raza, “Experimental investigation on the transition of separation/attachment in steady laminar juncture flows,” Exp. Fluids, 56, 74 (2015).CrossRef B. Hu, H. Zhang, M. Y. Younis, Y. Li, and M. S. Raza, “Experimental investigation on the transition of separation/attachment in steady laminar juncture flows,” Exp. Fluids, 56, 74 (2015).CrossRef
25.
go back to reference R. Himeno, K. Kuwahara, and T. Kawamura, “Computational study of circulation control with suction,” AIAA Paper No. 42 (1985). R. Himeno, K. Kuwahara, and T. Kawamura, “Computational study of circulation control with suction,” AIAA Paper No. 42 (1985).
26.
go back to reference C. V. Seal and C. R. Smith, “The control of turbulent end-wall boundary layers using surface suction,” Exp. Fluids 27, 484 (1999).CrossRef C. V. Seal and C. R. Smith, “The control of turbulent end-wall boundary layers using surface suction,” Exp. Fluids 27, 484 (1999).CrossRef
27.
go back to reference A. A. Merchant. Design and Analysis of Axial Aspirated Compressor Stages (Massachusetts Institute of Technology, Cambridge, 1999). A. A. Merchant. Design and Analysis of Axial Aspirated Compressor Stages (Massachusetts Institute of Technology, Cambridge, 1999).
28.
go back to reference J. L. Kerrebrock, “The prospects for aspirated compressors,” AIAA Paper No. 2472 (2000). J. L. Kerrebrock, “The prospects for aspirated compressors,” AIAA Paper No. 2472 (2000).
29.
go back to reference J. L. Kerrebrock, A. H. Epstein, A. A. Merchant, G. R. Guenette, D. Parker, and O. F. Onnee, “Design and test of an aspirated counter-rotating fan,” J. Turbomach. 130, 293 (2008).CrossRef J. L. Kerrebrock, A. H. Epstein, A. A. Merchant, G. R. Guenette, D. Parker, and O. F. Onnee, “Design and test of an aspirated counter-rotating fan,” J. Turbomach. 130, 293 (2008).CrossRef
30.
go back to reference Y. H. Li, J. Tang, and H. Liu, “Numerical investigation of improving profile performances by steady suction air,” J. Eng. Thermophys. 26, 572 (2005). Y. H. Li, J. Tang, and H. Liu, “Numerical investigation of improving profile performances by steady suction air,” J. Eng. Thermophys. 26, 572 (2005).
31.
go back to reference Z. Q. Zhu, Z. C. Wu, and J. C. Ding, “Laminar flow control technology and application,” Acta. Aeronaut. Astronaut. Sinica. 32, 765 (2011). Z. Q. Zhu, Z. C. Wu, and J. C. Ding, “Laminar flow control technology and application,” Acta. Aeronaut. Astronaut. Sinica. 32, 765 (2011).
Metadata
Title
Suction Controlled Topological Transition in Laminar Juncture Flows
Authors
B. Hu
H. Zhang
M. Y. Younis
Publication date
01-05-2020
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 3/2020
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820030064

Other articles of this Issue 3/2020

Fluid Dynamics 3/2020 Go to the issue

Premium Partners