Skip to main content
Top
Published in: Journal of Failure Analysis and Prevention 3/2013

01-06-2013 | Technical Article---Peer-Reviewed

Superplastic HSLA Steels: Microstructure and Failure

Authors: Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González, José Ignacio Verdeja

Published in: Journal of Failure Analysis and Prevention | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Certain materials can show superplasticity when traction tested at temperatures higher than 50% of their melting point and with low strain rates (\( \dot{\varepsilon } \) < 10−2 s−1), showing very high elongations (>100%) without localized necking and mainly intergranular fractures. This behavior requires that the starting grain size is small (<10 μm) so the flow of matter can be non-homogeneous (sliding and rotating of the grain boundaries, accommodated by diffusion). This work presents the superplastic characteristic of shipbuilding steel deformed at 800 °C and a strain rate slower than 10−3 s−1. The fine grain size (5 μm) is obtained when using Nb as a microalloying element and manufactured by controlled rolling processes (three stages). After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it happens in stage III of the creep behavior. This is confirmed through the Ashby–Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Backofen, W.A., Turner, I.R., Avery, H.: Superplasticity in an Al–Zn alloy. Trans. ASM 57, 980–990 (1964) Backofen, W.A., Turner, I.R., Avery, H.: Superplasticity in an Al–Zn alloy. Trans. ASM 57, 980–990 (1964)
2.
go back to reference Sherby, O.D., Wadsworth, J., Oyama, T.: Superplasticity: Prerequisites and Phenomenology. Universidad Politécnica de Madrid E.T.S.I.C.C.P., Madrid (1985) Sherby, O.D., Wadsworth, J., Oyama, T.: Superplasticity: Prerequisites and Phenomenology. Universidad Politécnica de Madrid E.T.S.I.C.C.P., Madrid (1985)
3.
go back to reference Alden, T.H.: Plastic Deformation of Materials. Review Topics in Superplasticity, pp. 225–266. Academic Press, New York (1975) Alden, T.H.: Plastic Deformation of Materials. Review Topics in Superplasticity, pp. 225–266. Academic Press, New York (1975)
4.
go back to reference González, R., García, J.O., Barbés, M.A., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained HSLA steels for cold forming. J. Iron Steel Res. Int. 17(10), 50–56 (2010)CrossRef González, R., García, J.O., Barbés, M.A., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained HSLA steels for cold forming. J. Iron Steel Res. Int. 17(10), 50–56 (2010)CrossRef
5.
go back to reference Avery, D.H., Backofen, W.A.: Trans. ASM 58, 551–562 (1965) Avery, D.H., Backofen, W.A.: Trans. ASM 58, 551–562 (1965)
6.
go back to reference Ashby, M.F., Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. Mater. 21, 149 (1973)CrossRef Ashby, M.F., Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. Mater. 21, 149 (1973)CrossRef
7.
go back to reference Pero-Sanz, J.A.: Science and Materials Engineering. CIE–Dossat 2000, Madrid (2006) (in Spanish) Pero-Sanz, J.A.: Science and Materials Engineering. CIE–Dossat 2000, Madrid (2006) (in Spanish)
8.
go back to reference Broek, C.T.: FutureSteelVehicle: leading edge innovation for steel body structures. Ironmak. Steelmak. 39(7), 477–482 (2012)CrossRef Broek, C.T.: FutureSteelVehicle: leading edge innovation for steel body structures. Ironmak. Steelmak. 39(7), 477–482 (2012)CrossRef
9.
go back to reference Mukherjee, K., Hazra, S.S., Militzer, M.: Grain refinement in dual-phase steels. Metall. Mater. Trans. A 40A, 2145–2159 (2009)CrossRef Mukherjee, K., Hazra, S.S., Militzer, M.: Grain refinement in dual-phase steels. Metall. Mater. Trans. A 40A, 2145–2159 (2009)CrossRef
10.
go back to reference Quintana, M.J., Gonzalez, R., Verdeja, L.F., Verdeja, J.I.: Dual-phase ultrafine-grained steels produced by controlled rolling processes. In: Materials Science and Technology (MS&T), Columbus, 16–20 Oct 2011, p. 504 Quintana, M.J., Gonzalez, R., Verdeja, L.F., Verdeja, J.I.: Dual-phase ultrafine-grained steels produced by controlled rolling processes. In: Materials Science and Technology (MS&T), Columbus, 16–20 Oct 2011, p. 504
11.
go back to reference Howe, A.A.: Ultrafine grained steels: industrial prospects. Mater. Sci. Technol. Ser. 16, 1264–1266 (2000)CrossRef Howe, A.A.: Ultrafine grained steels: industrial prospects. Mater. Sci. Technol. Ser. 16, 1264–1266 (2000)CrossRef
12.
go back to reference Gonzalez, R., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained steels and the n coefficient of strain hardening. Mem. Trab. Difus. Cient. Tec. 9, 45–54 (2011) Gonzalez, R., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained steels and the n coefficient of strain hardening. Mem. Trab. Difus. Cient. Tec. 9, 45–54 (2011)
13.
go back to reference Morrison, W.B.: Superplasticity of low-alloy steels. Trans. ASM 61, 423–434 (1968) Morrison, W.B.: Superplasticity of low-alloy steels. Trans. ASM 61, 423–434 (1968)
14.
go back to reference Reed-Hill, R.E.: Creep. In: Physical Metallurgy Principles, 2nd edn, pp. 827–887. D. Van Nostrand Company, New York (1973) Reed-Hill, R.E.: Creep. In: Physical Metallurgy Principles, 2nd edn, pp. 827–887. D. Van Nostrand Company, New York (1973)
15.
go back to reference Vetrano, J.S.: Superplasticity: mechanisms and applications. JOM 3, 22 (2001)CrossRef Vetrano, J.S.: Superplasticity: mechanisms and applications. JOM 3, 22 (2001)CrossRef
16.
go back to reference Capdevila, C., Amigo, V., Caballero, F.G., García de Andres, C., Salvador, M.D.: Influence of microalloying elements on recrystallization texture of warm-rolled interstitial free steels. Mater. Trans. 51(4), 625–634 (2010)CrossRef Capdevila, C., Amigo, V., Caballero, F.G., García de Andres, C., Salvador, M.D.: Influence of microalloying elements on recrystallization texture of warm-rolled interstitial free steels. Mater. Trans. 51(4), 625–634 (2010)CrossRef
17.
go back to reference Motohashi, Y., Ryukhtin, V., Takaaki, S., Saroun, J.: Influence of flat cavity formation on stress vs. strain and strain rate relations of superplastic deformation in 3Y–TZP. Mater. Trans. 51(3), 567–573 (2010)CrossRef Motohashi, Y., Ryukhtin, V., Takaaki, S., Saroun, J.: Influence of flat cavity formation on stress vs. strain and strain rate relations of superplastic deformation in 3Y–TZP. Mater. Trans. 51(3), 567–573 (2010)CrossRef
18.
go back to reference Pero-Sanz, J.A.: Steels: Physical Metallurgy. Selection and Design. CIE–Dossat 2000, Madrid (2004) (in Spanish) Pero-Sanz, J.A.: Steels: Physical Metallurgy. Selection and Design. CIE–Dossat 2000, Madrid (2004) (in Spanish)
19.
go back to reference Furuhara, T., Maki, T.: Grain boundary engineering for superplasticity in steels. J. Mater. Sci. 40, 919–926 (2005)CrossRef Furuhara, T., Maki, T.: Grain boundary engineering for superplasticity in steels. J. Mater. Sci. 40, 919–926 (2005)CrossRef
20.
go back to reference Vervynckt, S., Verbeken, K., López, B., Jonas, J.J.: Modern HSLA steel and role of non-recrystallisation temperature. Int. Mater. Rev. 57, 187–207 (2012) Vervynckt, S., Verbeken, K., López, B., Jonas, J.J.: Modern HSLA steel and role of non-recrystallisation temperature. Int. Mater. Rev. 57, 187–207 (2012)
21.
go back to reference Pero-Sanz, J.A., Sancho, J.P., Verdeja, J.I., Verdeja, L.F.: Ferritic grain size: an ignored factor, in fact, in the failure analysis of the sinking of a famous ship. DYNA 174, 156–161 (2012) Pero-Sanz, J.A., Sancho, J.P., Verdeja, J.I., Verdeja, L.F.: Ferritic grain size: an ignored factor, in fact, in the failure analysis of the sinking of a famous ship. DYNA 174, 156–161 (2012)
Metadata
Title
Superplastic HSLA Steels: Microstructure and Failure
Authors
Sara Fernandez
María José Quintana
José Ovidio García
Luis Felipe Verdeja
Roberto González
José Ignacio Verdeja
Publication date
01-06-2013
Publisher
Springer US
Published in
Journal of Failure Analysis and Prevention / Issue 3/2013
Print ISSN: 1547-7029
Electronic ISSN: 1864-1245
DOI
https://doi.org/10.1007/s11668-013-9662-9

Other articles of this Issue 3/2013

Journal of Failure Analysis and Prevention 3/2013 Go to the issue

Case History---Peer-Reviewed

Failure Analysis of Furnace Tube

Premium Partners