Skip to main content
Erschienen in: Journal of Failure Analysis and Prevention 3/2013

01.06.2013 | Technical Article---Peer-Reviewed

Superplastic HSLA Steels: Microstructure and Failure

verfasst von: Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González, José Ignacio Verdeja

Erschienen in: Journal of Failure Analysis and Prevention | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Certain materials can show superplasticity when traction tested at temperatures higher than 50% of their melting point and with low strain rates (\( \dot{\varepsilon } \) < 10−2 s−1), showing very high elongations (>100%) without localized necking and mainly intergranular fractures. This behavior requires that the starting grain size is small (<10 μm) so the flow of matter can be non-homogeneous (sliding and rotating of the grain boundaries, accommodated by diffusion). This work presents the superplastic characteristic of shipbuilding steel deformed at 800 °C and a strain rate slower than 10−3 s−1. The fine grain size (5 μm) is obtained when using Nb as a microalloying element and manufactured by controlled rolling processes (three stages). After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it happens in stage III of the creep behavior. This is confirmed through the Ashby–Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Backofen, W.A., Turner, I.R., Avery, H.: Superplasticity in an Al–Zn alloy. Trans. ASM 57, 980–990 (1964) Backofen, W.A., Turner, I.R., Avery, H.: Superplasticity in an Al–Zn alloy. Trans. ASM 57, 980–990 (1964)
2.
Zurück zum Zitat Sherby, O.D., Wadsworth, J., Oyama, T.: Superplasticity: Prerequisites and Phenomenology. Universidad Politécnica de Madrid E.T.S.I.C.C.P., Madrid (1985) Sherby, O.D., Wadsworth, J., Oyama, T.: Superplasticity: Prerequisites and Phenomenology. Universidad Politécnica de Madrid E.T.S.I.C.C.P., Madrid (1985)
3.
Zurück zum Zitat Alden, T.H.: Plastic Deformation of Materials. Review Topics in Superplasticity, pp. 225–266. Academic Press, New York (1975) Alden, T.H.: Plastic Deformation of Materials. Review Topics in Superplasticity, pp. 225–266. Academic Press, New York (1975)
4.
Zurück zum Zitat González, R., García, J.O., Barbés, M.A., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained HSLA steels for cold forming. J. Iron Steel Res. Int. 17(10), 50–56 (2010)CrossRef González, R., García, J.O., Barbés, M.A., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained HSLA steels for cold forming. J. Iron Steel Res. Int. 17(10), 50–56 (2010)CrossRef
5.
Zurück zum Zitat Avery, D.H., Backofen, W.A.: Trans. ASM 58, 551–562 (1965) Avery, D.H., Backofen, W.A.: Trans. ASM 58, 551–562 (1965)
6.
Zurück zum Zitat Ashby, M.F., Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. Mater. 21, 149 (1973)CrossRef Ashby, M.F., Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. Mater. 21, 149 (1973)CrossRef
7.
Zurück zum Zitat Pero-Sanz, J.A.: Science and Materials Engineering. CIE–Dossat 2000, Madrid (2006) (in Spanish) Pero-Sanz, J.A.: Science and Materials Engineering. CIE–Dossat 2000, Madrid (2006) (in Spanish)
8.
Zurück zum Zitat Broek, C.T.: FutureSteelVehicle: leading edge innovation for steel body structures. Ironmak. Steelmak. 39(7), 477–482 (2012)CrossRef Broek, C.T.: FutureSteelVehicle: leading edge innovation for steel body structures. Ironmak. Steelmak. 39(7), 477–482 (2012)CrossRef
9.
Zurück zum Zitat Mukherjee, K., Hazra, S.S., Militzer, M.: Grain refinement in dual-phase steels. Metall. Mater. Trans. A 40A, 2145–2159 (2009)CrossRef Mukherjee, K., Hazra, S.S., Militzer, M.: Grain refinement in dual-phase steels. Metall. Mater. Trans. A 40A, 2145–2159 (2009)CrossRef
10.
Zurück zum Zitat Quintana, M.J., Gonzalez, R., Verdeja, L.F., Verdeja, J.I.: Dual-phase ultrafine-grained steels produced by controlled rolling processes. In: Materials Science and Technology (MS&T), Columbus, 16–20 Oct 2011, p. 504 Quintana, M.J., Gonzalez, R., Verdeja, L.F., Verdeja, J.I.: Dual-phase ultrafine-grained steels produced by controlled rolling processes. In: Materials Science and Technology (MS&T), Columbus, 16–20 Oct 2011, p. 504
11.
Zurück zum Zitat Howe, A.A.: Ultrafine grained steels: industrial prospects. Mater. Sci. Technol. Ser. 16, 1264–1266 (2000)CrossRef Howe, A.A.: Ultrafine grained steels: industrial prospects. Mater. Sci. Technol. Ser. 16, 1264–1266 (2000)CrossRef
12.
Zurück zum Zitat Gonzalez, R., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained steels and the n coefficient of strain hardening. Mem. Trab. Difus. Cient. Tec. 9, 45–54 (2011) Gonzalez, R., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained steels and the n coefficient of strain hardening. Mem. Trab. Difus. Cient. Tec. 9, 45–54 (2011)
13.
Zurück zum Zitat Morrison, W.B.: Superplasticity of low-alloy steels. Trans. ASM 61, 423–434 (1968) Morrison, W.B.: Superplasticity of low-alloy steels. Trans. ASM 61, 423–434 (1968)
14.
Zurück zum Zitat Reed-Hill, R.E.: Creep. In: Physical Metallurgy Principles, 2nd edn, pp. 827–887. D. Van Nostrand Company, New York (1973) Reed-Hill, R.E.: Creep. In: Physical Metallurgy Principles, 2nd edn, pp. 827–887. D. Van Nostrand Company, New York (1973)
15.
Zurück zum Zitat Vetrano, J.S.: Superplasticity: mechanisms and applications. JOM 3, 22 (2001)CrossRef Vetrano, J.S.: Superplasticity: mechanisms and applications. JOM 3, 22 (2001)CrossRef
16.
Zurück zum Zitat Capdevila, C., Amigo, V., Caballero, F.G., García de Andres, C., Salvador, M.D.: Influence of microalloying elements on recrystallization texture of warm-rolled interstitial free steels. Mater. Trans. 51(4), 625–634 (2010)CrossRef Capdevila, C., Amigo, V., Caballero, F.G., García de Andres, C., Salvador, M.D.: Influence of microalloying elements on recrystallization texture of warm-rolled interstitial free steels. Mater. Trans. 51(4), 625–634 (2010)CrossRef
17.
Zurück zum Zitat Motohashi, Y., Ryukhtin, V., Takaaki, S., Saroun, J.: Influence of flat cavity formation on stress vs. strain and strain rate relations of superplastic deformation in 3Y–TZP. Mater. Trans. 51(3), 567–573 (2010)CrossRef Motohashi, Y., Ryukhtin, V., Takaaki, S., Saroun, J.: Influence of flat cavity formation on stress vs. strain and strain rate relations of superplastic deformation in 3Y–TZP. Mater. Trans. 51(3), 567–573 (2010)CrossRef
18.
Zurück zum Zitat Pero-Sanz, J.A.: Steels: Physical Metallurgy. Selection and Design. CIE–Dossat 2000, Madrid (2004) (in Spanish) Pero-Sanz, J.A.: Steels: Physical Metallurgy. Selection and Design. CIE–Dossat 2000, Madrid (2004) (in Spanish)
19.
Zurück zum Zitat Furuhara, T., Maki, T.: Grain boundary engineering for superplasticity in steels. J. Mater. Sci. 40, 919–926 (2005)CrossRef Furuhara, T., Maki, T.: Grain boundary engineering for superplasticity in steels. J. Mater. Sci. 40, 919–926 (2005)CrossRef
20.
Zurück zum Zitat Vervynckt, S., Verbeken, K., López, B., Jonas, J.J.: Modern HSLA steel and role of non-recrystallisation temperature. Int. Mater. Rev. 57, 187–207 (2012) Vervynckt, S., Verbeken, K., López, B., Jonas, J.J.: Modern HSLA steel and role of non-recrystallisation temperature. Int. Mater. Rev. 57, 187–207 (2012)
21.
Zurück zum Zitat Pero-Sanz, J.A., Sancho, J.P., Verdeja, J.I., Verdeja, L.F.: Ferritic grain size: an ignored factor, in fact, in the failure analysis of the sinking of a famous ship. DYNA 174, 156–161 (2012) Pero-Sanz, J.A., Sancho, J.P., Verdeja, J.I., Verdeja, L.F.: Ferritic grain size: an ignored factor, in fact, in the failure analysis of the sinking of a famous ship. DYNA 174, 156–161 (2012)
Metadaten
Titel
Superplastic HSLA Steels: Microstructure and Failure
verfasst von
Sara Fernandez
María José Quintana
José Ovidio García
Luis Felipe Verdeja
Roberto González
José Ignacio Verdeja
Publikationsdatum
01.06.2013
Verlag
Springer US
Erschienen in
Journal of Failure Analysis and Prevention / Ausgabe 3/2013
Print ISSN: 1547-7029
Elektronische ISSN: 1864-1245
DOI
https://doi.org/10.1007/s11668-013-9662-9

Weitere Artikel der Ausgabe 3/2013

Journal of Failure Analysis and Prevention 3/2013 Zur Ausgabe

Case History---Peer-Reviewed

Failure Analysis of Furnace Tube

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.