Skip to main content
Top
Published in: Metals and Materials International 9/2021

05-09-2020

Surface Metallization and Ceramic Deposition on Thermoplastic-Polymer and Thermosetting-Polymer Composite Via Atmospheric Plasma Spraying

Authors: Hansol Kwon, Jaeick Kim, Changhee Lee

Published in: Metals and Materials International | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A spray coating technique is an excellent method for surface metallization and ceramic deposition to widen the application fields of irreplaceable engineering polymers. In this study, Al metallization and Al2O3 deposition on thermoplastic-polymers (polycarbonate, polyimide) and a thermosetting-polymer composite (carbon fiber reinforced epoxy) were conducted via atmospheric plasma spray (APS). Due to the susceptibility of polymers to thermal or mechanical damage, precise process control is required. It was shown that the engineering temperature range critically determines the process window of thermoplastic-polymers. An Al2O3 coating can be fabricated on polymers via an Al bond coat. Like a heat sink, the Al buffer layer enables polymers to endure process heating. In low thermally resistant polycarbonate (PC), only a low plasma energy source could be applied. Additionally, vaporization induced by Al droplet contact was a clear reason of the unstable weak interface between the coating and substrate. The coatings fabricated on polyimide (PI) substrates generally showed a continuous and clean interface with a moderate adhesion property. In the case of carbon fiber reinforced epoxy (CFRP), it is believed that carbon fibers acted as a heat sink such that considerable thermal damage of CFRP was not observed and there was not delamination of the coatings. However, fracturing of carbon fibers and epoxy resin by grit-blasting (surface pre-treatment) made the surface unstable. This led to the worst adhesion characteristics between the coating and CFRP substrate. It was demonstrated that because the available temperature range and surface condition are very sensitive compared to conventional metal substrates, advanced surface pre-treatment, precise process optimization, and additional cooling are required for successful deposition.

Graphic Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Dyson, Engineering Polymers (Springer Science & Business Media, Berlin, 1991), pp. 1–14 R. Dyson, Engineering Polymers (Springer Science & Business Media, Berlin, 1991), pp. 1–14
2.
go back to reference J. Pascault, H. Sautereau, J. Verdu, R. Williams, Thermosetting Polymers (CRC Press, Boca Raton, 2002), pp 1–4CrossRef J. Pascault, H. Sautereau, J. Verdu, R. Williams, Thermosetting Polymers (CRC Press, Boca Raton, 2002), pp 1–4CrossRef
3.
go back to reference V. Mittal, High Performance Polymers and Engineering Plastics (Wiley, New Jersey, 2011), pp 1–20CrossRef V. Mittal, High Performance Polymers and Engineering Plastics (Wiley, New Jersey, 2011), pp 1–20CrossRef
4.
go back to reference J. Davis, Handbook of Thermal Spray Technology (ASM international, Cleveland, 2004), pp 3–99 J. Davis, Handbook of Thermal Spray Technology (ASM international, Cleveland, 2004), pp 3–99
5.
7.
go back to reference G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, Acta Mater. 56, 4858–4868 (2008)CrossRef G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, Acta Mater. 56, 4858–4868 (2008)CrossRef
8.
go back to reference M. Ivosevic, R. Knight, S. Kalidindi, G. Palmese, J. Sutter, J. Therm. Spray Technol. 14, 45–51 (2005)CrossRef M. Ivosevic, R. Knight, S. Kalidindi, G. Palmese, J. Sutter, J. Therm. Spray Technol. 14, 45–51 (2005)CrossRef
9.
go back to reference J. Voyer, P. Schulz, M. Schreiber, J. Therm. Spray Technol. 17, 818–823 (2008)CrossRef J. Voyer, P. Schulz, M. Schreiber, J. Therm. Spray Technol. 17, 818–823 (2008)CrossRef
10.
11.
go back to reference N. Bheekhun, A. Talib, M. Hassan, Int. Rev. Aerosp. Eng. 7, 84–87 (2014) N. Bheekhun, A. Talib, M. Hassan, Int. Rev. Aerosp. Eng. 7, 84–87 (2014)
12.
go back to reference A. Rezzoug, S. Abdi, A. Kaci, M. Yandouzi, Surf. Coat. Technol. 333, 13–23 (2018)CrossRef A. Rezzoug, S. Abdi, A. Kaci, M. Yandouzi, Surf. Coat. Technol. 333, 13–23 (2018)CrossRef
13.
go back to reference A. Liu, M. Guo, J. Gao, M. Zhao, Surf. Coat. Technol. 201, 2696–2700 (2006)CrossRef A. Liu, M. Guo, J. Gao, M. Zhao, Surf. Coat. Technol. 201, 2696–2700 (2006)CrossRef
14.
go back to reference S. Aruna, N. Balaji, J. Shedthi, V. Grips, Surf. Coat. Technol. 208, 92–100 (2012)CrossRef S. Aruna, N. Balaji, J. Shedthi, V. Grips, Surf. Coat. Technol. 208, 92–100 (2012)CrossRef
15.
go back to reference J. Li, H. Liao, C. Ding, C. Coddet, J. Mater. Process. Technol. 160, 34–42 (2005)CrossRef J. Li, H. Liao, C. Ding, C. Coddet, J. Mater. Process. Technol. 160, 34–42 (2005)CrossRef
16.
18.
go back to reference M. Ivosevic, R. Knight, S. Kalidindi, G. Palmese, High Perform. Polym. 15, 503–517 (2003)CrossRef M. Ivosevic, R. Knight, S. Kalidindi, G. Palmese, High Perform. Polym. 15, 503–517 (2003)CrossRef
19.
go back to reference W. Huang, Y. Zhao, X. Fan, X. Meng, Y. Wang, X. Cai, X. Cao, Z. Wang, J. Therm. Spray Technol. 22, 918–925 (2013)CrossRef W. Huang, Y. Zhao, X. Fan, X. Meng, Y. Wang, X. Cai, X. Cao, Z. Wang, J. Therm. Spray Technol. 22, 918–925 (2013)CrossRef
20.
go back to reference L. Zhu, W. Huang, H. Cheng, X. Cao, J. Therm. Spray Technol. 23, 1312–1322 (2014)CrossRef L. Zhu, W. Huang, H. Cheng, X. Cao, J. Therm. Spray Technol. 23, 1312–1322 (2014)CrossRef
21.
go back to reference H. Abedi, M. Salehi, A. Shafyei, Surf. Coat. Technol. 337, 104–116 (2018)CrossRef H. Abedi, M. Salehi, A. Shafyei, Surf. Coat. Technol. 337, 104–116 (2018)CrossRef
22.
go back to reference R. Joven, R. Das, A. Ahmed, P. Roozbehja van, B. Minaie, in SAMPE International Symposium Proceedings, Charleston, South Carolina, January 2012 R. Joven, R. Das, A. Ahmed, P. Roozbehja van, B. Minaie, in SAMPE International Symposium Proceedings, Charleston, South Carolina, January 2012
25.
go back to reference S. Goel, S. Bjorklund, N. Curry, U. Wiklund, S. Joshi, Surf. Coat. Technol. 315, 80–87 (2017)CrossRef S. Goel, S. Bjorklund, N. Curry, U. Wiklund, S. Joshi, Surf. Coat. Technol. 315, 80–87 (2017)CrossRef
Metadata
Title
Surface Metallization and Ceramic Deposition on Thermoplastic-Polymer and Thermosetting-Polymer Composite Via Atmospheric Plasma Spraying
Authors
Hansol Kwon
Jaeick Kim
Changhee Lee
Publication date
05-09-2020
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 9/2021
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-020-00864-w

Other articles of this Issue 9/2021

Metals and Materials International 9/2021 Go to the issue

Premium Partners