Skip to main content
Top
Published in: International Journal of Material Forming 4/2020

13-04-2019 | Original Research

Surface tracking of diffusion bonding void closure and its application to titanium alloys

Authors: Bryan Ferguson, M. Ramulu

Published in: International Journal of Material Forming | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diffusion bonding is a process by which two flat, usually metallic, surfaces are welded together at a high temperature and moderate pressure. Bonding occurs due to a combination of diffusion and power law creep that close the voids formed by microscopic differences between the mating surfaces. While the different process parameters are well understood the effects of surface condition and void shapes during bonding has not been thoroughly researched. In this paper we use measured surface profiles, discretize them, and apply the diffusion and creep equations numerically to the profiles in order to provide insight into the effects of surface geometry on bonding. Using this method the voids can interact with each other and the effects of nearby voids can be computed. Experimental tests are performed to confirm the model and theoretical tests were created to determine what the effects of different surface geometries are on bonding performance. While in most cases the bonding was dominated by power law creep the most optimal void shape was one where the voids had completed the creep stage and were controlled by diffusive processes. It was also found that concentrating the overlap area also increases bonding performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Hamilton CH (1973) Pressure requirements for diffusion bonding titanium. Titanium Science and Technology:625–648 Hamilton CH (1973) Pressure requirements for diffusion bonding titanium. Titanium Science and Technology:625–648
3.
go back to reference Garmong G, Paton NE, Argon AS (1975) Attainment of full interfacial contact during diffusion bonding. Metall Trans A 6(6):1269–1279CrossRef Garmong G, Paton NE, Argon AS (1975) Attainment of full interfacial contact during diffusion bonding. Metall Trans A 6(6):1269–1279CrossRef
4.
go back to reference Derby B, Wallach ER (1984) Diffusion bonding: development of theoretical model. Metal Science 18(9):427–431 Derby B, Wallach ER (1984) Diffusion bonding: development of theoretical model. Metal Science 18(9):427–431
5.
go back to reference Derby B, Wallach ER (1984) Diffusion bonds in copper. J Mater Sci 19(10):3140–3148CrossRef Derby B, Wallach ER (1984) Diffusion bonds in copper. J Mater Sci 19(10):3140–3148CrossRef
6.
go back to reference Derby B, Wallach ER (1982) Theoretical model for diffusion bonding. Metal Science 16(1):49–56 Derby B, Wallach ER (1982) Theoretical model for diffusion bonding. Metal Science 16(1):49–56
7.
go back to reference Hill A, Wallach E (1989) Modelling solid-state diffusion bonding. Acta Metall 37(9):2425–2437CrossRef Hill A, Wallach E (1989) Modelling solid-state diffusion bonding. Acta Metall 37(9):2425–2437CrossRef
8.
go back to reference Pilling J, Livesey DW, Hawkyard JB, Ridley N (1984) Solid state bonding in superplastic Ti-6Al-4V. Metal Science 18(3):117–122 Pilling J, Livesey DW, Hawkyard JB, Ridley N (1984) Solid state bonding in superplastic Ti-6Al-4V. Metal Science 18(3):117–122
9.
go back to reference Pilling J (1988) The kinetics of isostatic diffusion bonding in superplastic materials. Mater Sci Eng 100:137–144CrossRef Pilling J (1988) The kinetics of isostatic diffusion bonding in superplastic materials. Mater Sci Eng 100:137–144CrossRef
10.
go back to reference Salehi MT, Pilling J, Ridley N, Hamilton DL (1992) Isostatic diffusion bonding of superplastic Ti-6Al-4V. Mater Sci Eng A 150(1):1–6CrossRef Salehi MT, Pilling J, Ridley N, Hamilton DL (1992) Isostatic diffusion bonding of superplastic Ti-6Al-4V. Mater Sci Eng A 150(1):1–6CrossRef
11.
go back to reference Orhan N, Aksoy M, Eroglu M (1999) A new model for diffusion bonding and its application to duplex alloys. Mater Sci Eng A 271(1-2):458–468CrossRef Orhan N, Aksoy M, Eroglu M (1999) A new model for diffusion bonding and its application to duplex alloys. Mater Sci Eng A 271(1-2):458–468CrossRef
14.
go back to reference Guo ZX, Ridley N (1987) Modelling of diffusion bonding of metals. Mater Sci Technol 3(11):945–953CrossRef Guo ZX, Ridley N (1987) Modelling of diffusion bonding of metals. Mater Sci Technol 3(11):945–953CrossRef
15.
go back to reference Takahashi Y, Inoue K (1992) Recent void shrinkage models and their applicability to diffusion bonding. Mater Sci Technol 8(11):953–964CrossRef Takahashi Y, Inoue K (1992) Recent void shrinkage models and their applicability to diffusion bonding. Mater Sci Technol 8(11):953–964CrossRef
17.
go back to reference Kulkarni N, Ramulu M, Sanders DG (2016) Modeling of diffusion bonding time in dissimilar titanium alloys: preliminary results. J Manuf Sci Eng 138(12):121010CrossRef Kulkarni N, Ramulu M, Sanders DG (2016) Modeling of diffusion bonding time in dissimilar titanium alloys: preliminary results. J Manuf Sci Eng 138(12):121010CrossRef
31.
go back to reference Martinez L, Nix WD (1982) A numerical study of cavity growth controlled by coupled surface and grain boundary diffusion. Metall Trans A 13(3):427–437CrossRef Martinez L, Nix WD (1982) A numerical study of cavity growth controlled by coupled surface and grain boundary diffusion. Metall Trans A 13(3):427–437CrossRef
33.
go back to reference Takahashi Y, Takahashi K, Nishiguchi K (1991) A numerical analysis of void shrinkage processes controlled by coupled surface and interface diffusion. Acta Metall Mater 39(12):3199–3216CrossRef Takahashi Y, Takahashi K, Nishiguchi K (1991) A numerical analysis of void shrinkage processes controlled by coupled surface and interface diffusion. Acta Metall Mater 39(12):3199–3216CrossRef
34.
go back to reference Takahashi Y, Ueno F, Nishiguchi K (1988) A numerical analysis of the void-shrinkage process controlled by surface-diffusion. Acta Metall 36(11):3007–3018CrossRef Takahashi Y, Ueno F, Nishiguchi K (1988) A numerical analysis of the void-shrinkage process controlled by surface-diffusion. Acta Metall 36(11):3007–3018CrossRef
Metadata
Title
Surface tracking of diffusion bonding void closure and its application to titanium alloys
Authors
Bryan Ferguson
M. Ramulu
Publication date
13-04-2019
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 4/2020
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-019-01489-0

Other articles of this Issue 4/2020

International Journal of Material Forming 4/2020 Go to the issue

Premium Partners