Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2022

12-01-2022 | Research Article-Civil Engineering

Surface Wind Pressure Distribution of Molten-Salt Power Tower by CFD Analysis

Authors: Weiwei Sun, Zhenping Wang, Jun Feng, Wentao Gu

Published in: Arabian Journal for Science and Engineering | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Molten-salt towers can help society archive the sustainable development goals and allow more older, dirtier fossil fuel plants to retire. The distribution of surface wind pressure on molten-salt power should be carefully considered to provide a guidance to structural designers. In this paper, the numerical wind tunnel simulation of the molten-salt power tower was performed by using CFD technology. The accuracy of the application of CFD technology is verified based on the CAARC standard high-rise building model. The parameters considered in the validation analysis are computational domain size, mesh generation method, turbulence model, and boundary conditions. Then CFD analysis was performed to investigate the wind velocity, streamline, and pressure distribution of the molten-salt tower. In addition, the average wind pressure coefficients of the tower under various basic wind pressures and geometric sizes of the receivers are discussed. It indicted variations in the basic wind pressures and the receiver diameters have a clear effect on the mutations of the average coefficients on the vertical and horizontal lines, while the changes of the receiver heights have little influence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aljaerani, H.A.; Samykano, M.; Pandey, A.K., et al.: Thermophysical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: a critical review. J. Molec. Liq. 314(15), 113807 (2020)CrossRef Aljaerani, H.A.; Samykano, M.; Pandey, A.K., et al.: Thermophysical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: a critical review. J. Molec. Liq. 314(15), 113807 (2020)CrossRef
2.
go back to reference Yu, Q.; Fu, P.; Yang, Y., et al.: Modeling and parametric study of molten salt receiver of concentrating solar power tower plant. Energy 2020, 117505 (2020)CrossRef Yu, Q.; Fu, P.; Yang, Y., et al.: Modeling and parametric study of molten salt receiver of concentrating solar power tower plant. Energy 2020, 117505 (2020)CrossRef
3.
go back to reference Rodríguez-Sanchez, M.R.; Sánchez-González, A.; Santana, D.: Field-receiver model validation against solar two tests. Renew. Sustain. Energy Rev. 110, 43–52 (2019)CrossRef Rodríguez-Sanchez, M.R.; Sánchez-González, A.; Santana, D.: Field-receiver model validation against solar two tests. Renew. Sustain. Energy Rev. 110, 43–52 (2019)CrossRef
4.
go back to reference Holmes, J.D.: Wind Loading of Structures, 3rd edn. CRC Press, Boca Raton (2017) Holmes, J.D.: Wind Loading of Structures, 3rd edn. CRC Press, Boca Raton (2017)
5.
go back to reference Li, S.Y.; Liu, M.; Li, H.X., et al.: Effects of structural damping on wind-induced responses of a 243-meter-high solar tower based on a novel elastic test model. J. Wind Eng. Ind. Aerodyn. 172, 1–11 (2018)CrossRef Li, S.Y.; Liu, M.; Li, H.X., et al.: Effects of structural damping on wind-induced responses of a 243-meter-high solar tower based on a novel elastic test model. J. Wind Eng. Ind. Aerodyn. 172, 1–11 (2018)CrossRef
6.
go back to reference ACI 307-08. Code requirements for reinforced concrete chimneys and commentary. American Concrete Institute, Farmington Hills, 2008. ACI 307-08. Code requirements for reinforced concrete chimneys and commentary. American Concrete Institute, Farmington Hills, 2008.
7.
go back to reference CICIND. Model code for concrete chimneys—Part A: the shell (commentary) [S]. International Committee on Industrial Chimneys, Switzerland, 2001 CICIND. Model code for concrete chimneys—Part A: the shell (commentary) [S]. International Committee on Industrial Chimneys, Switzerland, 2001
8.
go back to reference GB 50051-2013.: Code for design of chimneys. China Planning Press, Beijing (in Chinese), 2013 GB 50051-2013.: Code for design of chimneys. China Planning Press, Beijing (in Chinese), 2013
9.
go back to reference Batham, J.P.: Wind tunnel tests on scale models of a large power station chimney. J. Wind Eng. Ind. Aerodyn. 18(1), 75–90 (1985)CrossRef Batham, J.P.: Wind tunnel tests on scale models of a large power station chimney. J. Wind Eng. Ind. Aerodyn. 18(1), 75–90 (1985)CrossRef
10.
go back to reference Tamura, Y.; Nishimura, I.: Elastic model of reinforced concrete chimney for wind tunnel testing. J. Wind Eng. Ind. Aerodyn. 33, 231–236 (1990)CrossRef Tamura, Y.; Nishimura, I.: Elastic model of reinforced concrete chimney for wind tunnel testing. J. Wind Eng. Ind. Aerodyn. 33, 231–236 (1990)CrossRef
11.
go back to reference Van Koten, H.: Wind induced vibrations of chimneys: the rules of the CICIND code for steel chimneys. Eng. Struct. 6(4), 350–356 (1984)CrossRef Van Koten, H.: Wind induced vibrations of chimneys: the rules of the CICIND code for steel chimneys. Eng. Struct. 6(4), 350–356 (1984)CrossRef
12.
go back to reference Verboom, G.K.; van Koten, H.: Vortex excitation: three design rules tested on 13 industrial chimneys. J. Wind Eng. Ind. Aerodyn. 98(3), 145–154 (2010)CrossRef Verboom, G.K.; van Koten, H.: Vortex excitation: three design rules tested on 13 industrial chimneys. J. Wind Eng. Ind. Aerodyn. 98(3), 145–154 (2010)CrossRef
13.
go back to reference Waldeck, J.L.: The measured and predicted response of a 300 m concrete chimney. J. Wind Eng. Ind. Aerodyn. 41, 229–240 (1992)CrossRef Waldeck, J.L.: The measured and predicted response of a 300 m concrete chimney. J. Wind Eng. Ind. Aerodyn. 41, 229–240 (1992)CrossRef
14.
go back to reference Lupi, F.; Niemann, H.; Höffer, R.: A novel spectral method for cross-wind vibrations: Application to 27 full-scale chimneys. J. Wind Eng. Ind. Aerodyn. 171, 353–365 (2017)CrossRef Lupi, F.; Niemann, H.; Höffer, R.: A novel spectral method for cross-wind vibrations: Application to 27 full-scale chimneys. J. Wind Eng. Ind. Aerodyn. 171, 353–365 (2017)CrossRef
15.
go back to reference Liang, S.G.; Yang, W.; Wang, L.: Wind-induced responses of a tall chimney by aeroelastic wind tunnel test using a continuous model. Eng. Struct. 176, 871–880 (2018)CrossRef Liang, S.G.; Yang, W.; Wang, L.: Wind-induced responses of a tall chimney by aeroelastic wind tunnel test using a continuous model. Eng. Struct. 176, 871–880 (2018)CrossRef
16.
go back to reference Mohsin, K.M.: CFD simulation of wind effects on industrial RCC chimney. Int. J. Civil Eng. Technol. 8(1), 1008–1020 (2017) Mohsin, K.M.: CFD simulation of wind effects on industrial RCC chimney. Int. J. Civil Eng. Technol. 8(1), 1008–1020 (2017)
17.
go back to reference Kolb, G.J.: An evaluation of possible next-generation high temperature molten-salt power towers. SANDIA Report SAND2011-9320, Sandia National Laboratories, 2011 Kolb, G.J.: An evaluation of possible next-generation high temperature molten-salt power towers. SANDIA Report SAND2011-9320, Sandia National Laboratories, 2011
18.
go back to reference Peterseim, J.H.; White, S.; Hellwig, U.: Novel solar tower structure to lower plant cost and construction risk. In: Solarpaces: international conference on concentrating solar power and chemical energy systems. AIP Publishing LLC, 2016 Peterseim, J.H.; White, S.; Hellwig, U.: Novel solar tower structure to lower plant cost and construction risk. In: Solarpaces: international conference on concentrating solar power and chemical energy systems. AIP Publishing LLC, 2016
19.
go back to reference Fouad, N.S.; Mahmoud, G.H.; Nasr, N.E.: Comparative study of international codes wind loads and CFD results for low rise buildings. Alex. Eng. J. 57, 3623–3639 (2018)CrossRef Fouad, N.S.; Mahmoud, G.H.; Nasr, N.E.: Comparative study of international codes wind loads and CFD results for low rise buildings. Alex. Eng. J. 57, 3623–3639 (2018)CrossRef
20.
go back to reference Su, N.; Peng, S.T.; Hong, N.N.; Zhang, J.L.: Experimental and numerical evaluation of wind-driven natural ventilation and dust suppression effects of coal sheds with porous gables. Build. Environ. 177, 106855 (2020)CrossRef Su, N.; Peng, S.T.; Hong, N.N.; Zhang, J.L.: Experimental and numerical evaluation of wind-driven natural ventilation and dust suppression effects of coal sheds with porous gables. Build. Environ. 177, 106855 (2020)CrossRef
21.
go back to reference Lal, S.; Kaushik, S.C.; Hans, R.: Experimental investigation and CFD simulation studies of a laboratory scale solar chimney for power generation[J]. Sustainable Energy Technol. Assess. 13, 13–22 (2016)CrossRef Lal, S.; Kaushik, S.C.; Hans, R.: Experimental investigation and CFD simulation studies of a laboratory scale solar chimney for power generation[J]. Sustainable Energy Technol. Assess. 13, 13–22 (2016)CrossRef
22.
go back to reference Burton, T.; Jenkins, N.; Sharpe, D., et al.: Wind Energy Handbook. John Wiley & Sons, UK (2011)CrossRef Burton, T.; Jenkins, N.; Sharpe, D., et al.: Wind Energy Handbook. John Wiley & Sons, UK (2011)CrossRef
23.
go back to reference Shourangiz-Haghighi, A.; Haghnegahdar, M.A.; Wang, L., et al.: State of the art in the optimisation of wind turbine performance using CFD. Archiv. Comput. Methods Eng. 27, 413–431 (2020)CrossRef Shourangiz-Haghighi, A.; Haghnegahdar, M.A.; Wang, L., et al.: State of the art in the optimisation of wind turbine performance using CFD. Archiv. Comput. Methods Eng. 27, 413–431 (2020)CrossRef
24.
go back to reference Badshah, M.; Badshah, S.; VanZwieten, J., et al.: Coupled fluid-structure interaction modelling of loads variation and fatigue life of a full-scale tidal turbine under the effect of velocity profile. Energies 12, 2217 (2019)CrossRef Badshah, M.; Badshah, S.; VanZwieten, J., et al.: Coupled fluid-structure interaction modelling of loads variation and fatigue life of a full-scale tidal turbine under the effect of velocity profile. Energies 12, 2217 (2019)CrossRef
25.
go back to reference Belver, A.V.; Ibán, A.L.; Lavín Martín, C.E.: Coupling between structural and fluid dynamic problems applied to vortex shedding in a 90 m steel chimney. J. Wind Eng. Ind. Aerodyn. 100(1), 30–37 (2012)CrossRef Belver, A.V.; Ibán, A.L.; Lavín Martín, C.E.: Coupling between structural and fluid dynamic problems applied to vortex shedding in a 90 m steel chimney. J. Wind Eng. Ind. Aerodyn. 100(1), 30–37 (2012)CrossRef
26.
go back to reference Meng, F.Q.; He, B.J.; Zhu, J., et al.: Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. J Build Eng 16, 146–158 (2018)CrossRef Meng, F.Q.; He, B.J.; Zhu, J., et al.: Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. J Build Eng 16, 146–158 (2018)CrossRef
27.
go back to reference ANSYS.: ANSYS® Fluent theory guide, release 17.2. ANSYS, Inc.; 2016 ANSYS.: ANSYS® Fluent theory guide, release 17.2. ANSYS, Inc.; 2016
28.
go back to reference GB 50009-2012.: Load code for the design of building structures. China Architecture & Building Press, Beijing, 2010 GB 50009-2012.: Load code for the design of building structures. China Architecture & Building Press, Beijing, 2010
29.
go back to reference Saydam, A.Z.; Taylan, M.: Evaluation of wind loads on ships by CFD analysis. Ocean Eng. 158, 54–63 (2018)CrossRef Saydam, A.Z.; Taylan, M.: Evaluation of wind loads on ships by CFD analysis. Ocean Eng. 158, 54–63 (2018)CrossRef
30.
go back to reference Rezaeiha, A.; Montazeri, H.; Blocken, B.: On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180, 838–857 (2019)CrossRef Rezaeiha, A.; Montazeri, H.; Blocken, B.: On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180, 838–857 (2019)CrossRef
31.
go back to reference Huang, P.; Gu, M.; Quan, Y.: Wind tunnel test research on CAARC standard tall building model. Chin. Quart. Mech. 29(4), 627–633 (2008) (in Chinese) Huang, P.; Gu, M.; Quan, Y.: Wind tunnel test research on CAARC standard tall building model. Chin. Quart. Mech. 29(4), 627–633 (2008) (in Chinese)
32.
go back to reference Ozmen, Y.; Baydar, E.; Beeck, J.V.: Wind flow over the low-rise building models with gabled roofs having different pitch angles. Build. Environ. 95, 63–74 (2015)CrossRef Ozmen, Y.; Baydar, E.; Beeck, J.V.: Wind flow over the low-rise building models with gabled roofs having different pitch angles. Build. Environ. 95, 63–74 (2015)CrossRef
33.
go back to reference Zhao, D.X.; He, B.J.: Effects of architectural shapes on surface wind pressure distribution: case studies of oval-shaped tall buildings. J. Build. Eng. 12, 219–228 (2017)CrossRef Zhao, D.X.; He, B.J.: Effects of architectural shapes on surface wind pressure distribution: case studies of oval-shaped tall buildings. J. Build. Eng. 12, 219–228 (2017)CrossRef
34.
go back to reference Lateb, M.; Masson, C.; Stathopoulos, T., et al.: Comparison of various types of k–ε models for pollutant emissions around a two-building configuration. J. Wind Eng. Ind. Aerodyn. 115, 9–21 (2013)CrossRef Lateb, M.; Masson, C.; Stathopoulos, T., et al.: Comparison of various types of k–ε models for pollutant emissions around a two-building configuration. J. Wind Eng. Ind. Aerodyn. 115, 9–21 (2013)CrossRef
35.
go back to reference GB 50010-2010.: Code for design of concrete structures. China Architecture & Building Press, China, (in Chinese), 2010 GB 50010-2010.: Code for design of concrete structures. China Architecture & Building Press, China, (in Chinese), 2010
36.
go back to reference Tamura, Y.; Ohkuma, T.; Okada, H., et al.: Wind loading standards and design criteria in Japan. J. Wind Eng. Ind. Aerodyn. 83(1), 555–566 (1999)CrossRef Tamura, Y.; Ohkuma, T.; Okada, H., et al.: Wind loading standards and design criteria in Japan. J. Wind Eng. Ind. Aerodyn. 83(1), 555–566 (1999)CrossRef
Metadata
Title
Surface Wind Pressure Distribution of Molten-Salt Power Tower by CFD Analysis
Authors
Weiwei Sun
Zhenping Wang
Jun Feng
Wentao Gu
Publication date
12-01-2022
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06501-x

Other articles of this Issue 10/2022

Arabian Journal for Science and Engineering 10/2022 Go to the issue

Premium Partners