Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2024

01-04-2024

Surfactant assisted-SnO2 nanorods and nanoflowers synthesised by hydrothermal method for supercapacitor applications

Authors: Nazir Ahmad Mala, Mehraj ud Din Rather, Raja Nisar Ali, Khalid Mujasam Batoo, Sajjad Hussain, Zubair Ahmad, Md. Yasir Bhat, Imad Barsoum, Ahmed Ibrahim

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, using polyvinyl alcohol (PVA) and sodium hexametaphosphate (SHP) as a surfactant solution, tetragonal SnO2 nanoparticles (NPs) were synthesised using the hydrothermal technique. NPs resulting from this process are named Sn-SHP and Sn-PVA.X-ray diffraction study revealed tetragonal crystal structure for both Sn-SHP and Sn-PVA nanoparticles, matching well with the JCPDS Card No. 88-0287. Scanning electron microscopy (SEM) showed rod-shaped Sn-SHP NPs, whereas Sn-PVA NPs have flower-like forms. A band gap energy of 3.71 and 3.84 eV was measured for the Sn-SHP and the Sn-PVA nanoparticles. The various oxidation states of SnO2 were confirmed by XPS spectra in order to confirm its oxidation states. The electrodes were analysed by using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical ion spectroscopy (EIS) in 6 M KOH electrolytes. For Sn-PVA electrodes, the computed specific capacitance (Cs) values are 330.52, 71.25, 27.34, and 18.85 Fg−1 at scan rates of 2, 10, 30, and 50 mVs−1; whereas for Sn-SHP electrodes, the obtained values are 256.24, 55.46, 21.04, and 14.45 Fg−1 at scan rates of 2, 10, 30, and 50 mVs−1. Additionally, from the GCD curves demonstrate that the Sn-PVA electrode has Cs of 126, 98, 81, and 71 Fg−1, and Sn-SHP electrodes revealed Cs of 75.65, 66.44, 48.69, and 25.97 Fg−1 at current density of 1, 2, 4, and 6 Ag−1, respectively. Galvanostatic charge–discharge curves for Sn-SHP and Sn-PVA NPs were traced in a potential window ranging from 0.03 to 0.4 V, and it was ascertained that Sn-PVA with flower shaped nanoparticles retains Sc of 126 Fg−1 at current density of 1 Ag−1, making it potential candidate for supercapacitor applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.K. Sun, S.T. Myung, ACS Energy Lett. 3, 2620–2640 (2018) A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.K. Sun, S.T. Myung, ACS Energy Lett. 3, 2620–2640 (2018)
2.
go back to reference A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Colloid Interface Sci. 473, 22–27 (2016)PubMed A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Colloid Interface Sci. 473, 22–27 (2016)PubMed
3.
go back to reference C. Yang, M. Sun, L. Zhang, P. Liu, P. Wang, H. Lu, A.C.S. Appl, Mater. Interfaces 11(16), 14713–14721 (2019) C. Yang, M. Sun, L. Zhang, P. Liu, P. Wang, H. Lu, A.C.S. Appl, Mater. Interfaces 11(16), 14713–14721 (2019)
4.
go back to reference S. Sivakumar, Y. Robinson, N.A. Mala, Appl. Surf. Sci. Adv. 12, 100344 (2022) S. Sivakumar, Y. Robinson, N.A. Mala, Appl. Surf. Sci. Adv. 12, 100344 (2022)
5.
go back to reference N.A. Mala, M.A. Dar, S. Sivakumar, S. Husain, K.M. Batoo, Inorg. Chem. Commun. 142, 109661 (2022) N.A. Mala, M.A. Dar, S. Sivakumar, S. Husain, K.M. Batoo, Inorg. Chem. Commun. 142, 109661 (2022)
6.
go back to reference N.A. Mala, M.A. Dar, S. Sivakumar, T.A. Dar, E. Manikandan, J. Nanoparticle Res. 24(11), 229 (2022) N.A. Mala, M.A. Dar, S. Sivakumar, T.A. Dar, E. Manikandan, J. Nanoparticle Res. 24(11), 229 (2022)
7.
go back to reference T. Li, G.H. Li, L.H. Li, L. Liu, Y. Xu, H.Y. Ding, T. Zhang, A.C.S. Appl, Mater. Interfaces 8(4), 2562–2572 (2016) T. Li, G.H. Li, L.H. Li, L. Liu, Y. Xu, H.Y. Ding, T. Zhang, A.C.S. Appl, Mater. Interfaces 8(4), 2562–2572 (2016)
8.
go back to reference Y. Liu, X. Peng, Appl. Mater. Today 8, 104–115 (2017) Y. Liu, X. Peng, Appl. Mater. Today 8, 104–115 (2017)
9.
go back to reference H. Jia, Q. Li, C. Li, Y. Song, H. Zheng, J. Zhao, W. Zhang, X. Liu, Z. Liu, Y. Liu, Chem. Eng. J. 354, 254–260 (2018) H. Jia, Q. Li, C. Li, Y. Song, H. Zheng, J. Zhao, W. Zhang, X. Liu, Z. Liu, Y. Liu, Chem. Eng. J. 354, 254–260 (2018)
10.
go back to reference H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, F. Zhang, Powder Technol. 333, 153–159 (2018) H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, F. Zhang, Powder Technol. 333, 153–159 (2018)
11.
go back to reference L. Xiao, W. Sun, X. Zhou, Z. Cai, F. Hu, Vacuum 156, 291–297 (2018) L. Xiao, W. Sun, X. Zhou, Z. Cai, F. Hu, Vacuum 156, 291–297 (2018)
12.
go back to reference X. Li, C. Hu, X. Wang, Y. Xi, Appl. Surf. Sci. 258(10), 4370–4376 (2012) X. Li, C. Hu, X. Wang, Y. Xi, Appl. Surf. Sci. 258(10), 4370–4376 (2012)
13.
go back to reference B.G.S. Raj, A.M. Asiri, A.H. Qusti, J.J. Wu, S. Anandan, Ultrason. Sonochem. 21(6), 1933–1938 (2014) B.G.S. Raj, A.M. Asiri, A.H. Qusti, J.J. Wu, S. Anandan, Ultrason. Sonochem. 21(6), 1933–1938 (2014)
14.
go back to reference S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, L.S. Roselin, H.L. Hsu, R. Selvin, Results Phys. 12, 878–885 (2019) S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, L.S. Roselin, H.L. Hsu, R. Selvin, Results Phys. 12, 878–885 (2019)
15.
go back to reference R.M. Kore, B.J. Lokhande, J. Alloys Compd. 725, 129–138 (2017) R.M. Kore, B.J. Lokhande, J. Alloys Compd. 725, 129–138 (2017)
16.
go back to reference G.V. Pereira, V.A. Freitas, H.S. Oliveira, L.C.A. Oliveira, J.C. Belchior, RSC Adv. 4(109), 63650–63654 (2014) G.V. Pereira, V.A. Freitas, H.S. Oliveira, L.C.A. Oliveira, J.C. Belchior, RSC Adv. 4(109), 63650–63654 (2014)
17.
go back to reference M. Jayalakshmi, M.M. Rao, N. Venugopal, K.B. Kim, J. Power. Sour. 166(2), 578–583 (2007) M. Jayalakshmi, M.M. Rao, N. Venugopal, K.B. Kim, J. Power. Sour. 166(2), 578–583 (2007)
18.
go back to reference M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, A.C.S. Appl, Mater. Interfaces 7(27), 14905–14911 (2015) M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, A.C.S. Appl, Mater. Interfaces 7(27), 14905–14911 (2015)
19.
go back to reference A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Ind. Eng. Chem. 56, 90–98 (2017) A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Ind. Eng. Chem. 56, 90–98 (2017)
20.
go back to reference A.A. Yadav, Y.M. Hunge, B.K. Kim, S.W. Kang, Surf. Interfaces 34, 102340 (2022) A.A. Yadav, Y.M. Hunge, B.K. Kim, S.W. Kang, Surf. Interfaces 34, 102340 (2022)
23.
go back to reference A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, J. Mater. Sci. Mater. Electron. 29, 16401–16409 (2018) A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, J. Mater. Sci. Mater. Electron. 29, 16401–16409 (2018)
24.
go back to reference E. Ramasamy, J. Lee, J. Phys. Chem. C 114(50), 22032–22037 (2010) E. Ramasamy, J. Lee, J. Phys. Chem. C 114(50), 22032–22037 (2010)
25.
go back to reference M. Wu, W. Zeng, Q. He, J. Zhang, Mater. Sci. Semicond. Process. 16(6), 1495–1501 (2013) M. Wu, W. Zeng, Q. He, J. Zhang, Mater. Sci. Semicond. Process. 16(6), 1495–1501 (2013)
26.
go back to reference Y. Sun, W.D. Chemelewski, S.P. Berglund, C. Li, H. He, G. Shi, C.B. Mullins, A.C.S. Appl, Mater. Interfaces 6(8), 5494–5499 (2014) Y. Sun, W.D. Chemelewski, S.P. Berglund, C. Li, H. He, G. Shi, C.B. Mullins, A.C.S. Appl, Mater. Interfaces 6(8), 5494–5499 (2014)
27.
go back to reference L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Am. J. Mater. Sci. 2(2), 6–10 (2012) L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Am. J. Mater. Sci. 2(2), 6–10 (2012)
28.
go back to reference Y. Yang, X. Zhao, H.E. Wang, M. Li, C. Hao, M. Ji, G. Cao, J. Mater. Chem. A. 6(8), 3479–3487 (2018) Y. Yang, X. Zhao, H.E. Wang, M. Li, C. Hao, M. Ji, G. Cao, J. Mater. Chem. A. 6(8), 3479–3487 (2018)
29.
go back to reference M. Zhao, Q. Zhao, J. Qiu, H. Xue, H. Pang, RSC Adv. 6(101), 99178–99178 (2016) M. Zhao, Q. Zhao, J. Qiu, H. Xue, H. Pang, RSC Adv. 6(101), 99178–99178 (2016)
30.
go back to reference Z. He, J. Zhou, B. Mod, Res. Catal. 2, 13–18 (2013) Z. He, J. Zhou, B. Mod, Res. Catal. 2, 13–18 (2013)
31.
go back to reference T.T. Bhosale, H.M. Shinde, N.L. Gavade, S.B. Babar, V.V. Gawade, S.R. Sabale, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 29, 6826–6834 (2018) T.T. Bhosale, H.M. Shinde, N.L. Gavade, S.B. Babar, V.V. Gawade, S.R. Sabale, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 29, 6826–6834 (2018)
32.
go back to reference K. Bouras, J.L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, A. Slaoui, J. Mater. Chem. C. 2(39), 8235–8243 (2014) K. Bouras, J.L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, A. Slaoui, J. Mater. Chem. C. 2(39), 8235–8243 (2014)
33.
go back to reference A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5(49), 39193–39204 (2015) A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5(49), 39193–39204 (2015)
34.
go back to reference W.W. Wang, Y.J. Zhu, L.X. Yang, Adv. Funct. Mater. 17(1), 59–64 (2007) W.W. Wang, Y.J. Zhu, L.X. Yang, Adv. Funct. Mater. 17(1), 59–64 (2007)
35.
go back to reference M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Hu, Mater. Lett. 59(28), 3641–3644 (2005) M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Hu, Mater. Lett. 59(28), 3641–3644 (2005)
36.
go back to reference K. Wongsaprom, R.A. Bornphotsawatkun, E. Swatsitang, Appl. Phys. A 114, 373–379 (2014) K. Wongsaprom, R.A. Bornphotsawatkun, E. Swatsitang, Appl. Phys. A 114, 373–379 (2014)
37.
go back to reference S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, Mater. Res. Express 6(8), 0850i3 (2019) S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, Mater. Res. Express 6(8), 0850i3 (2019)
38.
go back to reference E. Duraisamy, H.T. Das, A.S. Sharma, P. Elumalai, New J. Chem. 42(8), 6114–6124 (2018) E. Duraisamy, H.T. Das, A.S. Sharma, P. Elumalai, New J. Chem. 42(8), 6114–6124 (2018)
39.
go back to reference H. Chen, L. Ding, W. Sun, Q. Jiang, J. Hu, J. Li, RSC Adv. 5(69), 56401–56409 (2015) H. Chen, L. Ding, W. Sun, Q. Jiang, J. Hu, J. Li, RSC Adv. 5(69), 56401–56409 (2015)
40.
go back to reference Y. Dong, Z. Zhao, Z. Wang, Y. Liu, X. Wang, J. Qiu, A.C.S. Appl, Mater. Interfaces 7(4), 2444–2451 (2015) Y. Dong, Z. Zhao, Z. Wang, Y. Liu, X. Wang, J. Qiu, A.C.S. Appl, Mater. Interfaces 7(4), 2444–2451 (2015)
41.
go back to reference J. Gajendiran, V. Rajendran, Mater. Lett. 139, 116–118 (2015) J. Gajendiran, V. Rajendran, Mater. Lett. 139, 116–118 (2015)
42.
go back to reference B. Saravanakumar, G. Ravi, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, J. Sol-Gel Sci. Technol. 86, 521–535 (2018) B. Saravanakumar, G. Ravi, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, J. Sol-Gel Sci. Technol. 86, 521–535 (2018)
43.
go back to reference J. Mayandi, M. Marikkannan, V. Ragavendran, P. Jayabal, J. Nanosci. Nanotechnol. 2, 707–710 (2014) J. Mayandi, M. Marikkannan, V. Ragavendran, P. Jayabal, J. Nanosci. Nanotechnol. 2, 707–710 (2014)
44.
go back to reference S. Sivakumar, N.A. Mala, K.M. Batoo, M.F. Ijaz, Inorg. Chem. Commun. 134, 108959 (2021) S. Sivakumar, N.A. Mala, K.M. Batoo, M.F. Ijaz, Inorg. Chem. Commun. 134, 108959 (2021)
45.
go back to reference W. Xia, H. Wang, X. Zeng, J. Han, J. Zhu, M. Zhou, S. Wu, CrystEngComm 16(30), 6841–6847 (2014) W. Xia, H. Wang, X. Zeng, J. Han, J. Zhu, M. Zhou, S. Wu, CrystEngComm 16(30), 6841–6847 (2014)
46.
go back to reference S.Y. Turishchev, O.A. Chuvenkova, E.V. Parinova, D.A. Koyuda, R.G. Chumakov, M. Presselt, A. Schleusener, V. Sivakov, Results Phys. 11, 507–509 (2018) S.Y. Turishchev, O.A. Chuvenkova, E.V. Parinova, D.A. Koyuda, R.G. Chumakov, M. Presselt, A. Schleusener, V. Sivakov, Results Phys. 11, 507–509 (2018)
47.
go back to reference S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, J. Phys. Chem. Solids 141, 109407 (2020) S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, J. Phys. Chem. Solids 141, 109407 (2020)
48.
go back to reference N.A. Mala, R.N. Ali, S. Hussain, S.M. Ibrahim, N. Ullah, S. Husain, Z. Ahmad, Int. J. Hydrogen Energy 48(84), 32739–32755 (2023) N.A. Mala, R.N. Ali, S. Hussain, S.M. Ibrahim, N. Ullah, S. Husain, Z. Ahmad, Int. J. Hydrogen Energy 48(84), 32739–32755 (2023)
49.
go back to reference M.K. Song, S. Cheng, H. Chen, W. Qin, K.W. Nam, S. Xu, M. Liu, Nano Lett. 12(7), 3483–3490 (2012)PubMed M.K. Song, S. Cheng, H. Chen, W. Qin, K.W. Nam, S. Xu, M. Liu, Nano Lett. 12(7), 3483–3490 (2012)PubMed
50.
go back to reference R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, ACS Nano 11(6), 5293–5308 (2017)PubMed R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, ACS Nano 11(6), 5293–5308 (2017)PubMed
51.
go back to reference S. Guo, H. Shen, Z. Tie, S. Zhu, P. Shi, J. Fan, Y. Min, J. Power. Sour. 359, 285–294 (2017) S. Guo, H. Shen, Z. Tie, S. Zhu, P. Shi, J. Fan, Y. Min, J. Power. Sour. 359, 285–294 (2017)
52.
go back to reference S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, J. Mater. Sci. Mater. Electron. 30, 13174–13190 (2019) S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, J. Mater. Sci. Mater. Electron. 30, 13174–13190 (2019)
53.
go back to reference P. Asen, M. Haghighi, S. Shahrokhian, N. Taghavinia, J. Alloys Compd. 782, 38–50 (2019) P. Asen, M. Haghighi, S. Shahrokhian, N. Taghavinia, J. Alloys Compd. 782, 38–50 (2019)
54.
go back to reference S.G. Krishnan, M.V. Reddy, M. Harilal, B. Vidyadharan, I.I. Misnon, M.H. Ab Rahim, R. Jose, Electrochim. Acta 161, 312–321 (2015) S.G. Krishnan, M.V. Reddy, M. Harilal, B. Vidyadharan, I.I. Misnon, M.H. Ab Rahim, R. Jose, Electrochim. Acta 161, 312–321 (2015)
55.
go back to reference R. Weber, A.J. Louli, K.P. Plucknett, J.R. Dahn, J. Electrochem. Soc. 166(10), A1779 (2019) R. Weber, A.J. Louli, K.P. Plucknett, J.R. Dahn, J. Electrochem. Soc. 166(10), A1779 (2019)
Metadata
Title
Surfactant assisted-SnO2 nanorods and nanoflowers synthesised by hydrothermal method for supercapacitor applications
Authors
Nazir Ahmad Mala
Mehraj ud Din Rather
Raja Nisar Ali
Khalid Mujasam Batoo
Sajjad Hussain
Zubair Ahmad
Md. Yasir Bhat
Imad Barsoum
Ahmed Ibrahim
Publication date
01-04-2024
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2024
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12531-6

Other articles of this Issue 11/2024

Journal of Materials Science: Materials in Electronics 11/2024 Go to the issue