Skip to main content
Top
Published in: Artificial Life and Robotics 2/2022

19-03-2022 | Original Article

Survivor searching in a dynamically changing flood zone by multiple unmanned aerial vehicles

Authors: Koki Asami, Yang Bai, Mikhail Svinin, Michinori Hatayama

Published in: Artificial Life and Robotics | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a control strategy for survivor searching in a dynamically changing flood zone using a group of unmanned aerial vehicles (UAVs). Assuming that there are multiple groups of the survivors, the positions which are time-varying and cannot be accurately located, the control strategy requires the UAVs to optimally cover possible locations of survivors in the flood zone. A robust adaptive controller has been proposed to implement the strategy, the feasibility of which is verified under simulations in the presence of time-varying uncertainties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tadokoro S (2019) Disaster robotics: results from the ImPACT tough robotics challenge. Springer, New YorkCrossRef Tadokoro S (2019) Disaster robotics: results from the ImPACT tough robotics challenge. Springer, New YorkCrossRef
3.
go back to reference Bai Y, Asami K, Svinin M, Magid E (2020) Cooperative multi-robot control for monitoring an expanding flood area. In: Proceedings of 17th International Conference on Ubiquitous Robots Bai Y, Asami K, Svinin M, Magid E (2020) Cooperative multi-robot control for monitoring an expanding flood area. In: Proceedings of 17th International Conference on Ubiquitous Robots
4.
go back to reference Norouzi Ghazbi S, Aghli Y, Alimohammadi M, Akbari AA (2016) Quadrotors unmanned aerial vehicles: a review. Int J Smart Sens Intell Syst 9:309–333 Norouzi Ghazbi S, Aghli Y, Alimohammadi M, Akbari AA (2016) Quadrotors unmanned aerial vehicles: a review. Int J Smart Sens Intell Syst 9:309–333
5.
go back to reference Miyashita R, Sunada S, Tanabe Y, Aoyama T (2014) Comparison between a single rotor helicopter and a quadrotor uav. J Jpn Soc Aeronaut Space Sci 62(6):193–197 Miyashita R, Sunada S, Tanabe Y, Aoyama T (2014) Comparison between a single rotor helicopter and a quadrotor uav. J Jpn Soc Aeronaut Space Sci 62(6):193–197
6.
go back to reference Meyer J, Sendobry A, Kohlbrecher S, Klingauf U, von Stryk O (2012) Comprehensive simulation of quadrotor UAVs using ROS and Gazebo. Springer, BerlinCrossRef Meyer J, Sendobry A, Kohlbrecher S, Klingauf U, von Stryk O (2012) Comprehensive simulation of quadrotor UAVs using ROS and Gazebo. Springer, BerlinCrossRef
7.
go back to reference Chung S-J, Paranjape AA, Dames P, Shen S, Kumar V (2018) A survey on aerial swarm robotics. IEEE Trans Robot 34(4):837–855CrossRef Chung S-J, Paranjape AA, Dames P, Shen S, Kumar V (2018) A survey on aerial swarm robotics. IEEE Trans Robot 34(4):837–855CrossRef
8.
go back to reference Cortes J, Martinez S, Karatas T, Bullo F (2004) Coverage control for mobile sensing networks. IEEE Trans Robot Autom 20(2):243–255CrossRef Cortes J, Martinez S, Karatas T, Bullo F (2004) Coverage control for mobile sensing networks. IEEE Trans Robot Autom 20(2):243–255CrossRef
9.
go back to reference Michael N, Zavlanos MM, Kumar V, Pappas GJ (2008) Distributed multi-robot task assignment and formation control. In: IEEE international conference on robotics and automation, pp 128–133 Michael N, Zavlanos MM, Kumar V, Pappas GJ (2008) Distributed multi-robot task assignment and formation control. In: IEEE international conference on robotics and automation, pp 128–133
10.
go back to reference Miah S, Panah AY, Fallah MMH, Spinello D (2017) Generalized non-autonomous metric optimization for area coverage problems with mobile autonomous agents. Automatica 80:295–299MathSciNetCrossRef Miah S, Panah AY, Fallah MMH, Spinello D (2017) Generalized non-autonomous metric optimization for area coverage problems with mobile autonomous agents. Automatica 80:295–299MathSciNetCrossRef
11.
go back to reference Lee SG, Diaz-Mercado Y, Egerstedt M (2015) Multirobot control using time-varying density functions. IEEE Trans Rob 31(2):489–493CrossRef Lee SG, Diaz-Mercado Y, Egerstedt M (2015) Multirobot control using time-varying density functions. IEEE Trans Rob 31(2):489–493CrossRef
12.
go back to reference Chevet T, Maniu CS, Vlad C, Zhang Y (2019) Guaranteed voronoi-based deployment for multi-agent systems under uncertain measurements. In: 2019 18th European Control Conference (ECC), pp 4016–4021 Chevet T, Maniu CS, Vlad C, Zhang Y (2019) Guaranteed voronoi-based deployment for multi-agent systems under uncertain measurements. In: 2019 18th European Control Conference (ECC), pp 4016–4021
13.
go back to reference Li S, Li B, Yu J, Zhang L, Zhang A, Cai K (2020) Probabilistic threshold k-ann query method based on uncertain voronoi diagram in internet of vehicles. IEEE transactions on intelligent transportation systems, pp 1–11 Li S, Li B, Yu J, Zhang L, Zhang A, Cai K (2020) Probabilistic threshold k-ann query method based on uncertain voronoi diagram in internet of vehicles. IEEE transactions on intelligent transportation systems, pp 1–11
14.
go back to reference Xiao J, Wang G, Zhang Y, Cheng L (2020) A distributed multi-agent dynamic area coverage algorithm based on reinforcement learning. IEEE Access 8:33 511-33 521CrossRef Xiao J, Wang G, Zhang Y, Cheng L (2020) A distributed multi-agent dynamic area coverage algorithm based on reinforcement learning. IEEE Access 8:33 511-33 521CrossRef
15.
go back to reference Miah S, Fallah MMH, Spinello D (2017) Non-autonomous coverage control with diffusive evolving density. IEEE Trans Autom Control 62(10):5262–5268CrossRef Miah S, Fallah MMH, Spinello D (2017) Non-autonomous coverage control with diffusive evolving density. IEEE Trans Autom Control 62(10):5262–5268CrossRef
16.
go back to reference Bai Y, Svinin M, Magid E (2020) Multi-robot control for adaptive caging and tracking of a flood area. In: Proceedings of SICE Annual Conference 2020 (SICE 2020) Bai Y, Svinin M, Magid E (2020) Multi-robot control for adaptive caging and tracking of a flood area. In: Proceedings of SICE Annual Conference 2020 (SICE 2020)
17.
go back to reference Bai Y, Wang Y, Svinin M, Magid E, Sun R (2020) Function approximation technique based immersion and invariance control for unknown nonlinear systems. IEEE Control Syst Lett 4(4):934–939MathSciNetCrossRef Bai Y, Wang Y, Svinin M, Magid E, Sun R (2020) Function approximation technique based immersion and invariance control for unknown nonlinear systems. IEEE Control Syst Lett 4(4):934–939MathSciNetCrossRef
18.
go back to reference Huang A, Chen Y (2004) Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. Control Syst Technol IEEE Trans 12:770–775CrossRef Huang A, Chen Y (2004) Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. Control Syst Technol IEEE Trans 12:770–775CrossRef
19.
go back to reference Bai Y, Svinin M, Yamamoto M (2017) Adaptive trajectory tracking control for the ball-pendulum system with time-varying uncertainties. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2083–2090 Bai Y, Svinin M, Yamamoto M (2017) Adaptive trajectory tracking control for the ball-pendulum system with time-varying uncertainties. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2083–2090
20.
go back to reference Bai Y, Svinin M, Yamamoto M (2018) Function approximation based control for non-square systems. SICE J Control Measur Syst Integr 11(6):477–485CrossRef Bai Y, Svinin M, Yamamoto M (2018) Function approximation based control for non-square systems. SICE J Control Measur Syst Integr 11(6):477–485CrossRef
21.
go back to reference Chien M, Huang A (2007) Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties. IEEE Trans Industr Electron 54(2):1032–1038CrossRef Chien M, Huang A (2007) Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties. IEEE Trans Industr Electron 54(2):1032–1038CrossRef
22.
go back to reference Khorashadizadeh S, Fateh MM (2017) Uncertainty estimation in robust tracking control of robot manipulators using the fourier series expansion. Robotica 35(2):310–336CrossRef Khorashadizadeh S, Fateh MM (2017) Uncertainty estimation in robust tracking control of robot manipulators using the fourier series expansion. Robotica 35(2):310–336CrossRef
23.
go back to reference Zirkohi MM (2017) Direct adaptive function approximation techniques based control of robot manipulators. J Dyn Syst Measur Control 140(1) Zirkohi MM (2017) Direct adaptive function approximation techniques based control of robot manipulators. J Dyn Syst Measur Control 140(1)
24.
go back to reference Liang J-W, Chen H-Y, Wu Q-W (2015) Active suppression of pneumatic vibration isolators using adaptive sliding controller with self-tuning fuzzy compensation. J Vib Control 21(2):246–259CrossRef Liang J-W, Chen H-Y, Wu Q-W (2015) Active suppression of pneumatic vibration isolators using adaptive sliding controller with self-tuning fuzzy compensation. J Vib Control 21(2):246–259CrossRef
25.
go back to reference Ebeigbe D, Nguyen T, Richter H, Simon D (2020) Robust regressor-free control of rigid robots using function approximations. IEEE Trans Control Syst Technol 28(4):1433–1446CrossRef Ebeigbe D, Nguyen T, Richter H, Simon D (2020) Robust regressor-free control of rigid robots using function approximations. IEEE Trans Control Syst Technol 28(4):1433–1446CrossRef
26.
go back to reference Schwager M, Rus D, Slotine J-J (2009) Decentralized, adaptive coverage control for networked robots. Int J Robot Res 28(3):357–375CrossRef Schwager M, Rus D, Slotine J-J (2009) Decentralized, adaptive coverage control for networked robots. Int J Robot Res 28(3):357–375CrossRef
27.
go back to reference Wang BH, Wang DB, Ali ZA, Ting BT, Wang H (2019) An overview of various kinds of wind effects on unmanned aerial vehicle. Measur Control 52(7–8):731–739CrossRef Wang BH, Wang DB, Ali ZA, Ting BT, Wang H (2019) An overview of various kinds of wind effects on unmanned aerial vehicle. Measur Control 52(7–8):731–739CrossRef
28.
go back to reference Bai Y, Wang Y, Svinin M, Magid E, Sun R (2022) Adaptive multi-agent coverage control with obstacle avoidance. IEEE Control Syst Lett 6:944–949CrossRef Bai Y, Wang Y, Svinin M, Magid E, Sun R (2022) Adaptive multi-agent coverage control with obstacle avoidance. IEEE Control Syst Lett 6:944–949CrossRef
Metadata
Title
Survivor searching in a dynamically changing flood zone by multiple unmanned aerial vehicles
Authors
Koki Asami
Yang Bai
Mikhail Svinin
Michinori Hatayama
Publication date
19-03-2022
Publisher
Springer Japan
Published in
Artificial Life and Robotics / Issue 2/2022
Print ISSN: 1433-5298
Electronic ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-022-00755-w

Other articles of this Issue 2/2022

Artificial Life and Robotics 2/2022 Go to the issue