Skip to main content
Top
Published in: Geotechnical and Geological Engineering 3/2020

01-01-2020 | Original Paper

Swedish Circle Method for Pseudo-dynamic Analysis of Slope Considering Circular Failure Mechanism

Published in: Geotechnical and Geological Engineering | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Determination of the stability of soil slope under earthquake loading condition is one of the major parts of concern for Civil Engineer. The Swedish Circle method or the method of slices is used for determining the stability of the earth slope of cϕ soil. A limit equilibrium pseudo-dynamic approach is adopted in the present analysis, which considers the effect of the phase difference in both shear and primary waves traveling through the soil medium of the soil during earthquake excitation. The threshold acceleration and displacement of soil slopes are calculated using the pseudo-dynamic method. A two-dimensional numerical solution is performed using Finite Element software PLAXIS 8.2. In the finite element analysis, the slope materials are modeled using Mohr–Coulomb’s plastic elasto-plastic failure criterion. Effects of a wide range of variation of soil parameters i.e. horizontal and vertical seismic acceleration, stability factor, slope angle and angle of internal friction are studied through this analysis. The present analysis has been compared with the other available methods of seismic analyses. Also, the finite element results are compared with those obtained from the analytical investigations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ahmad SM, Choudhury D (2010) Seismic rotational stability of waterfront retaining wall using pseudo-dynamic method. Int J Geomech 10:45–52CrossRef Ahmad SM, Choudhury D (2010) Seismic rotational stability of waterfront retaining wall using pseudo-dynamic method. Int J Geomech 10:45–52CrossRef
go back to reference Bell JM (1968) General slope stability analysis. J Soil Mech Found Div 94(6):1253–1270 Bell JM (1968) General slope stability analysis. J Soil Mech Found Div 94(6):1253–1270
go back to reference Bishop AW (1955) The use of slip circle in the stability analysis of slopes. Geotechnique 5:7–17CrossRef Bishop AW (1955) The use of slip circle in the stability analysis of slopes. Geotechnique 5:7–17CrossRef
go back to reference Bishop AW, Morgenstern N (1960) Stability coefficients for earth slopes. Geotechnique 10:129–150CrossRef Bishop AW, Morgenstern N (1960) Stability coefficients for earth slopes. Geotechnique 10:129–150CrossRef
go back to reference Chanda N, Ghosh S, Pal M (2015) Analysis of slope considering circular rupture surface. J Geotech Eng 10:288–296CrossRef Chanda N, Ghosh S, Pal M (2015) Analysis of slope considering circular rupture surface. J Geotech Eng 10:288–296CrossRef
go back to reference Choudhury D, Nimbalkar S (2005) Seismic passive resistance by pseudo-dynamic method. Geotechnique 55:699–702CrossRef Choudhury D, Nimbalkar S (2005) Seismic passive resistance by pseudo-dynamic method. Geotechnique 55:699–702CrossRef
go back to reference Choudhury D, Nimbalkar S (2006) Pseudo-dynamic approach of seismic active earth pressure behind retaining wall. J Geotech Geol Eng 24:1103–1113CrossRef Choudhury D, Nimbalkar S (2006) Pseudo-dynamic approach of seismic active earth pressure behind retaining wall. J Geotech Geol Eng 24:1103–1113CrossRef
go back to reference Chowdhury RN (1978) Slope analysis. Elsevier, New York Chowdhury RN (1978) Slope analysis. Elsevier, New York
go back to reference Culmann C (1875) Die Craphische Statik. Meyer and Zeller, Zurich Culmann C (1875) Die Craphische Statik. Meyer and Zeller, Zurich
go back to reference Dongping D, Li L (2012) Analysis of slope stability and research of calculation method under horizontal slice method. Rock Soil Mech 33:3179–3188 Dongping D, Li L (2012) Analysis of slope stability and research of calculation method under horizontal slice method. Rock Soil Mech 33:3179–3188
go back to reference Fellenius W (1927) Erdstatische berechnungen mit reibung und kohaesion und under annahme kreiszylindrisher gleitflaechen (statistical analysis of earth slopes and retaining walls considering both friction and cohesion and assuming cylindrical sliding surfaces). W. Ernst und Sohn, Berlin Fellenius W (1927) Erdstatische berechnungen mit reibung und kohaesion und under annahme kreiszylindrisher gleitflaechen (statistical analysis of earth slopes and retaining walls considering both friction and cohesion and assuming cylindrical sliding surfaces). W. Ernst und Sohn, Berlin
go back to reference Fellenius W (1936) Calculation of the stability of earth dams. In: Proceedings of the second congress of large dams, Washington DC, vol 4, pp 445–463 Fellenius W (1936) Calculation of the stability of earth dams. In: Proceedings of the second congress of large dams, Washington DC, vol 4, pp 445–463
go back to reference Ghosh P (2008) Seismic active earth pressure behind a non-vertical retaining wall using pseudo-dynamic analysis. Can Geotech J 45:117–123CrossRef Ghosh P (2008) Seismic active earth pressure behind a non-vertical retaining wall using pseudo-dynamic analysis. Can Geotech J 45:117–123CrossRef
go back to reference Ghosh S (2010) Seismic active earth pressure coefficients on battered retaining wall supporting inclined c–Φ backfill. Indian Geotech J 40:78–83 Ghosh S (2010) Seismic active earth pressure coefficients on battered retaining wall supporting inclined c–Φ backfill. Indian Geotech J 40:78–83
go back to reference Ghosh S, Sharma RP (2010) Pseudo-dynamic active response of non-vertical retaining wall supporting c–Φ backfill. Geotech Geol Eng 28:633–641CrossRef Ghosh S, Sharma RP (2010) Pseudo-dynamic active response of non-vertical retaining wall supporting c–Φ backfill. Geotech Geol Eng 28:633–641CrossRef
go back to reference Janbu N (1954) Applications of composite slip surfaces for stability analysis. In: Proceedings of European conference on the stability of earth slopes, Stockholm, Sweden, vol 3, pp 43–49 Janbu N (1954) Applications of composite slip surfaces for stability analysis. In: Proceedings of European conference on the stability of earth slopes, Stockholm, Sweden, vol 3, pp 43–49
go back to reference Janbu N (1973) Slope stability computations. Embankment dam engineering—Casagrande memorial volume. Wiley, New York, pp 47–86 Janbu N (1973) Slope stability computations. Embankment dam engineering—Casagrande memorial volume. Wiley, New York, pp 47–86
go back to reference Kramer SL, Smith MW (1997) Modified newmark model for seismic displacements of compliant slopes. J Geotech Geoenviron Eng 123:635–644CrossRef Kramer SL, Smith MW (1997) Modified newmark model for seismic displacements of compliant slopes. J Geotech Geoenviron Eng 123:635–644CrossRef
go back to reference Leschinsky D, San KC (1994) Pseudostatic seismic stability of slopes: design charts. J Geotech Eng 120:1514–1532CrossRef Leschinsky D, San KC (1994) Pseudostatic seismic stability of slopes: design charts. J Geotech Eng 120:1514–1532CrossRef
go back to reference Loukidis D, Bandini P, Salgado R (2003) Stability of seismically loaded slopes using limit analysis. Geotechnique 53:463–479CrossRef Loukidis D, Bandini P, Salgado R (2003) Stability of seismically loaded slopes using limit analysis. Geotechnique 53:463–479CrossRef
go back to reference Morgenstern NR, Price VE (1965) The analysis of the stability of general slip surfaces. Geotechnique 15:79–93CrossRef Morgenstern NR, Price VE (1965) The analysis of the stability of general slip surfaces. Geotechnique 15:79–93CrossRef
go back to reference Newmark N (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–160CrossRef Newmark N (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–160CrossRef
go back to reference Petterson KE (1916) Kajraset i Gotenborg des 5te Mars 1916 (Collapse of a quay wall at Gothenburg March 5th 1916). Tek. Tidskr. (in Swedish) Petterson KE (1916) Kajraset i Gotenborg des 5te Mars 1916 (Collapse of a quay wall at Gothenburg March 5th 1916). Tek. Tidskr. (in Swedish)
go back to reference Petterson KE (1955) The early history of circular sliding surfaces. Geotechnique 5(4):275–296CrossRef Petterson KE (1955) The early history of circular sliding surfaces. Geotechnique 5(4):275–296CrossRef
go back to reference Saha A, Ghosh S (2014) Pseudo-dynamic analysis for bearing capacity of foundation resting on c–φ soil. Int J Geotech Eng 9:379–387CrossRef Saha A, Ghosh S (2014) Pseudo-dynamic analysis for bearing capacity of foundation resting on c–φ soil. Int J Geotech Eng 9:379–387CrossRef
go back to reference Saha A, Ghosh S (2015) Pseudo-dynamic bearing capacity of shallow strip footing resting on c–φ soil considering composite failure surface: bearing capacity analysis using pseudo-dynamic method. Int J Geotech Earthq Eng 6:12–34CrossRef Saha A, Ghosh S (2015) Pseudo-dynamic bearing capacity of shallow strip footing resting on c–φ soil considering composite failure surface: bearing capacity analysis using pseudo-dynamic method. Int J Geotech Earthq Eng 6:12–34CrossRef
go back to reference Sarma SK (1973) Stability analysis of embankments and slopes. Geotechnique 23:423–433CrossRef Sarma SK (1973) Stability analysis of embankments and slopes. Geotechnique 23:423–433CrossRef
go back to reference Sarma SK (1979) Stability analysis of embankments and slopes. J Geotech Eng Div 105:1511–1524 Sarma SK (1979) Stability analysis of embankments and slopes. J Geotech Eng Div 105:1511–1524
go back to reference Spencer E (1967) A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique 17:11–26CrossRef Spencer E (1967) A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique 17:11–26CrossRef
go back to reference Spencer E (1973) Thrust line criterion in embankment stability analysis. Geotechnique 23:85–100CrossRef Spencer E (1973) Thrust line criterion in embankment stability analysis. Geotechnique 23:85–100CrossRef
go back to reference Steedman RS, Zeng X (1990) The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Geotechnique ICE 40:103–112CrossRef Steedman RS, Zeng X (1990) The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Geotechnique ICE 40:103–112CrossRef
go back to reference Steward T, Sivakugan N, Shukla SK, Das BM (2011) Taylor’s slope stability charts revisited. Int J Geomech 11:348–352CrossRef Steward T, Sivakugan N, Shukla SK, Das BM (2011) Taylor’s slope stability charts revisited. Int J Geomech 11:348–352CrossRef
go back to reference Taylor DW (1937) Stability of earth slopes. J Boston Soc Civ Eng 24:197–246 Taylor DW (1937) Stability of earth slopes. J Boston Soc Civ Eng 24:197–246
go back to reference Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, New York Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, New York
go back to reference Zhu DY, Lee CF, Jiang HD (2003) Generalized framework of limit equilibrium methods for slope stability analysis. Geotechnique 53:377–395CrossRef Zhu DY, Lee CF, Jiang HD (2003) Generalized framework of limit equilibrium methods for slope stability analysis. Geotechnique 53:377–395CrossRef
Metadata
Title
Swedish Circle Method for Pseudo-dynamic Analysis of Slope Considering Circular Failure Mechanism
Publication date
01-01-2020
Published in
Geotechnical and Geological Engineering / Issue 3/2020
Print ISSN: 0960-3182
Electronic ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-019-01170-y

Other articles of this Issue 3/2020

Geotechnical and Geological Engineering 3/2020 Go to the issue