Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-04-2011

Synaptic and intrinsic determinants of the phase resetting curve for weak coupling

Authors: Srisairam Achuthan, Robert J. Butera, Carmen C. Canavier

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A phase resetting curve (PRC) keeps track of the extent to which a perturbation at a given phase advances or delays the next spike, and can be used to predict phase locking in networks of oscillators. The PRC can be estimated by convolving the waveform of the perturbation with the infinitesimal PRC (iPRC) under the assumption of weak coupling. The iPRC is often defined with respect to an infinitesimal current as zi(ϕ), where ϕ is phase, but can also be defined with respect to an infinitesimal conductance change as zg(ϕ). In this paper, we first show that the two approaches are equivalent. Coupling waveforms corresponding to synapses with different time courses sample zg(ϕ) in predictably different ways. We show that for oscillators with Type I excitability, an anomalous region in zg(ϕ) with opposite sign to that seen otherwise is often observed during an action potential. If the duration of the synaptic perturbation is such that it effectively samples this region, PRCs with both advances and delays can be observed despite Type I excitability. We also show that changing the duration of a perturbation so that it preferentially samples regions of stable or unstable slopes in zg(ϕ) can stabilize or destabilize synchrony in a network with the corresponding dynamics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Figure 6(a) of Maran and Canavier mistakenly implied that the WB model had a significant instantaneous second order reset. The pulse height but not the width went to zero in that figure; when the width is also made to go to zero, the second order resetting essentially disappears.
 
2
Izhikevich (2007) pointed out that Hodgkin’s definition of Type I excitability is only strictly satisfied by a saddle node bifurcation on an invariant limit cycle in which the saddle node collides with the quiescent stable fixed point and the limit cycle simultaneously.
 
Literature
go back to reference Achuthan, S., & Canavier, C. C. (2009). Phase resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. The Journal of Neuroscience, 29(16), 5218–5233.PubMedCrossRef Achuthan, S., & Canavier, C. C. (2009). Phase resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. The Journal of Neuroscience, 29(16), 5218–5233.PubMedCrossRef
go back to reference Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of Computational Neuroscience, 15(1), 71–90.PubMedCrossRef Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of Computational Neuroscience, 15(1), 71–90.PubMedCrossRef
go back to reference Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P., & Jonas, P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. The Journal of Neuroscience, 21(8), 2687–2698.PubMed Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P., & Jonas, P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. The Journal of Neuroscience, 21(8), 2687–2698.PubMed
go back to reference Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews. Neuroscience, 8, 451–465.PubMedCrossRef Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews. Neuroscience, 8, 451–465.PubMedCrossRef
go back to reference Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16(4), 673–715.PubMedCrossRef Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16(4), 673–715.PubMedCrossRef
go back to reference Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press Inc.CrossRef Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press Inc.CrossRef
go back to reference Canavier, C. C., Butera, R. J., Dror, R. O., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1997). Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation. Biological Cybernetics, 77(6), 367–380.PubMedCrossRef Canavier, C. C., Butera, R. J., Dror, R. O., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1997). Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation. Biological Cybernetics, 77(6), 367–380.PubMedCrossRef
go back to reference Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1999). Control of multistability in ring circuits of oscillators. Biological Cybernetics, 80, 87–102.CrossRef Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1999). Control of multistability in ring circuits of oscillators. Biological Cybernetics, 80, 87–102.CrossRef
go back to reference Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT.
go back to reference Dror, R. O., Canavier, C. C., Butera, R. J., Clark, J. W., & Byrne, J. H. (1999). A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators. Biological Cybernetics, 80, 11–23.PubMedCrossRef Dror, R. O., Canavier, C. C., Butera, R. J., Clark, J. W., & Byrne, J. H. (1999). A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators. Biological Cybernetics, 80, 11–23.PubMedCrossRef
go back to reference Ermentrout, G. B. (1996). Type I membranes, phase resetting curves and synchrony. Neural Computation, 8(5), 979–1001.PubMedCrossRef Ermentrout, G. B. (1996). Type I membranes, phase resetting curves and synchrony. Neural Computation, 8(5), 979–1001.PubMedCrossRef
go back to reference Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM.CrossRef Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM.CrossRef
go back to reference Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators. I. SIAM Journal on Mathematical Analysis, 15(2), 215–237.CrossRef Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators. I. SIAM Journal on Mathematical Analysis, 15(2), 215–237.CrossRef
go back to reference Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50(1), 125–146.CrossRef Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50(1), 125–146.CrossRef
go back to reference Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in coupled neural oscillators. Journal of Mathematical Biology, 29(3), 195–217.CrossRef Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in coupled neural oscillators. Journal of Mathematical Biology, 29(3), 195–217.CrossRef
go back to reference Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C. E., et al. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4(12), 1259–1264.PubMedCrossRef Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C. E., et al. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4(12), 1259–1264.PubMedCrossRef
go back to reference Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase resetting curves in real neurons and its significance for neural modeling. Physical Review Letters, 94(15), 158101.PubMedCrossRef Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase resetting curves in real neurons and its significance for neural modeling. Physical Review Letters, 94(15), 158101.PubMedCrossRef
go back to reference Goel, P., & Ermentrout, G. B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163(3–4), 191–216.CrossRef Goel, P., & Ermentrout, G. B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163(3–4), 191–216.CrossRef
go back to reference Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations of vector fields. New York: Springer-Verlag. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations of vector fields. New York: Springer-Verlag.
go back to reference Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.PubMedCrossRef Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.PubMedCrossRef
go back to reference Hairer, E. & Wanner, G. (1991). Solving ordinary differential equations II. Stiff and differential-algebraic problems. Springer series in computational mathematics, Vol 14. Berlin: Springer.PubMedCrossRef Hairer, E. & Wanner, G. (1991). Solving ordinary differential equations II. Stiff and differential-algebraic problems. Springer series in computational mathematics, Vol 14. Berlin: Springer.PubMedCrossRef
go back to reference Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.PubMedCrossRef Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.PubMedCrossRef
go back to reference Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7(2), 307–337.PubMedCrossRef Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7(2), 307–337.PubMedCrossRef
go back to reference Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal de Physiologie, 107(2), 165–181. Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal de Physiologie, 107(2), 165–181.
go back to reference Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer-Verlag. Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer-Verlag.
go back to reference Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30(7), 350–356.PubMedCrossRef Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30(7), 350–356.PubMedCrossRef
go back to reference Hutchison, W. D., Dostrovsky, J. O., Walters, J. R., Courtemanche, R., Boraud, T., Goldberg, J., et al. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. The Journal of Neuroscience, 24(42), 9240–9243.PubMedCrossRef Hutchison, W. D., Dostrovsky, J. O., Walters, J. R., Courtemanche, R., Boraud, T., Goldberg, J., et al. (2004). Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. The Journal of Neuroscience, 24(42), 9240–9243.PubMedCrossRef
go back to reference Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.CrossRef Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.CrossRef
go back to reference Izhikevich, E. M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT.
go back to reference Khoo, M. C. K. (2000). Physiological control systems: analysis, simulation and estimation. New York: IEEE. Khoo, M. C. K. (2000). Physiological control systems: analysis, simulation and estimation. New York: IEEE.
go back to reference Lewis, T. J, & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14(3), 283–309. Lewis, T. J, & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14(3), 283–309.
go back to reference Mancilla, J. G., Lewis, T. J., Pinto, D. J., Rinzel, J., & Connors, B. W. (2007). Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. The Journal of Neuroscience, 27(8), 2058–2073.PubMedCrossRef Mancilla, J. G., Lewis, T. J., Pinto, D. J., Rinzel, J., & Connors, B. W. (2007). Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. The Journal of Neuroscience, 27(8), 2058–2073.PubMedCrossRef
go back to reference Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. Journal of Computational Neuroscience, 24(1), 37–55.PubMedCrossRef Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. Journal of Computational Neuroscience, 24(1), 37–55.PubMedCrossRef
go back to reference Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.PubMedCrossRef Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.PubMedCrossRef
go back to reference Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs. Journal of Computational Neuroscience, 18(3), 287–295.PubMedCrossRef Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs. Journal of Computational Neuroscience, 18(3), 287–295.PubMedCrossRef
go back to reference Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.PubMedCrossRef Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.PubMedCrossRef
go back to reference Oppenheim, A. V., Willsky, A. S., & Young, I. T. (1983). Signals and systems. Englewood Cliffs: Prentice-Hall. Oppenheim, A. V., Willsky, A. S., & Young, I. T. (1983). Signals and systems. Englewood Cliffs: Prentice-Hall.
go back to reference Oprisan, S. A., & Canavier, C. C. (2002). The influence of limit cycle topology on the phase resetting curve. Neural Computation, 14(5), 1027–1057.PubMedCrossRef Oprisan, S. A., & Canavier, C. C. (2002). The influence of limit cycle topology on the phase resetting curve. Neural Computation, 14(5), 1027–1057.PubMedCrossRef
go back to reference Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87(4), 2283–2298.PubMedCrossRef Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87(4), 2283–2298.PubMedCrossRef
go back to reference Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, G. P., & Segundo, J. P. (1964). Pacemaker neurons: effects of regularly spaced synaptic input. Science, 145(3627), 61–63.PubMedCrossRef Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, G. P., & Segundo, J. P. (1964). Pacemaker neurons: effects of regularly spaced synaptic input. Science, 145(3627), 61–63.PubMedCrossRef
go back to reference Preyer, A. J., & Butera, R. J. (2005). Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. Physical Review Letters, 95(13), 138103.PubMedCrossRef Preyer, A. J., & Butera, R. J. (2005). Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. Physical Review Letters, 95(13), 138103.PubMedCrossRef
go back to reference Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT. Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT.
go back to reference Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature, 397(6718), 430–433.PubMedCrossRef Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception's shadow: long-distance synchronization of human brain activity. Nature, 397(6718), 430–433.PubMedCrossRef
go back to reference Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993a). The dynamic clamp - artificial conductances in biological neurons. Trends in Neurosciences, 16(10), 389–394.PubMedCrossRef Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993a). The dynamic clamp - artificial conductances in biological neurons. Trends in Neurosciences, 16(10), 389–394.PubMedCrossRef
go back to reference Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993b). Dynamic clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMed Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993b). Dynamic clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMed
go back to reference Sieling, F. H., Canavier, C. C., & Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102, 69–84.PubMedCrossRef Sieling, F. H., Canavier, C. C., & Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102, 69–84.PubMedCrossRef
go back to reference Stelt, O., van der Belger, A., & Lieberman, J. A. (2004). Macroscopic fast neuronal oscillations and synchrony in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17567–17568.PubMedCrossRef Stelt, O., van der Belger, A., & Lieberman, J. A. (2004). Macroscopic fast neuronal oscillations and synchrony in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17567–17568.PubMedCrossRef
go back to reference Tateno, T., & Robinson, H. P. C. (2007). Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophysical Journal, 92(2), 683–695.PubMedCrossRef Tateno, T., & Robinson, H. P. C. (2007). Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophysical Journal, 92(2), 683–695.PubMedCrossRef
go back to reference Timofeev, I., & Steriade, M. (2004). Neocortical seizures: initiation, development and cessation. Neuroscience, 123(2), 299–336.PubMedCrossRef Timofeev, I., & Steriade, M. (2004). Neocortical seizures: initiation, development and cessation. Neuroscience, 123(2), 299–336.PubMedCrossRef
go back to reference Traub, R. D., & Jefferys, J. G. (1994). Are there unifying principles underlying the generation of epileptic afterdischarges in vitro? Progress in Brain Research, 102, 383–394.PubMedCrossRef Traub, R. D., & Jefferys, J. G. (1994). Are there unifying principles underlying the generation of epileptic afterdischarges in vitro? Progress in Brain Research, 102, 383–394.PubMedCrossRef
go back to reference Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168.PubMedCrossRef Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168.PubMedCrossRef
go back to reference Van Vreeswijk, C., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1(4), 313–321.PubMedCrossRef Van Vreeswijk, C., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1(4), 313–321.PubMedCrossRef
go back to reference Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16(20), 6402–6413.PubMed Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16(20), 6402–6413.PubMed
go back to reference Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical Biology, 16, 15–42.PubMedCrossRef Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical Biology, 16, 15–42.PubMedCrossRef
go back to reference Winfree, A. T. (2001). The geometry of biological time. New York: Springer. Winfree, A. T. (2001). The geometry of biological time. New York: Springer.
Metadata
Title
Synaptic and intrinsic determinants of the phase resetting curve for weak coupling
Authors
Srisairam Achuthan
Robert J. Butera
Carmen C. Canavier
Publication date
01-04-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0264-1

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner