Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-04-2011

Encoding the fine-structured mechanism of action potential dynamics with qualitative motifs

Author: Robert Clewley

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work presents a neuroinformatic method for deriving mechanistic descriptions of fine-structured neural activity. This is a new development in the computer-assisted analysis of dynamics in conductance-based models, which is illustrated using single compartment models of an action potential. A sequence of abstract, qualitative motifs is inferred from this analysis, forming a template that is independent of the specific equations from which they were abstracted. The template encodes the assumptions behind the model reduction steps used to derive the motifs, and so specifies quantitative information about their domains of validity. The template representation of a mechanism is converted to a hybrid dynamical system, which is simulated as a sequence of low-dimensional reduced models (in this example, phase plane models) with appropriate switching conditions taken from the motifs. We demonstrate the validity of the template on a detailed single neuron model of spiking taken from the literature, and show that the corresponding hybrid system simulation closely mimics the spiking dynamics of the full model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Borisyuk, A., & Rinzel, J. (2005). Understanding neuronal dynamics by geometrical dissection of minimal models. In: C. Chow, B. Gutkin, D. Hansel, C. Meunier, & J. Dalibard (Eds.), Models and methods in neurophysics (pp. 19–72). Elsevier. Borisyuk, A., & Rinzel, J. (2005). Understanding neuronal dynamics by geometrical dissection of minimal models. In: C. Chow, B. Gutkin, D. Hansel, C. Meunier, & J. Dalibard (Eds.), Models and methods in neurophysics (pp. 19–72). Elsevier.
go back to reference Bradley, E., Easley, M., & Stolle, R. (2001). Reasoning about nonlinear system identification. Artificial Intelligence, 133(1), 139–188.CrossRef Bradley, E., Easley, M., & Stolle, R. (2001). Reasoning about nonlinear system identification. Artificial Intelligence, 133(1), 139–188.CrossRef
go back to reference Clewley, R. (2004). Dominant-scale analysis for the automatic reduction of high-dimensional ODE systems. In: Y. Bar-Yam (Ed.), ICCS 2004 proceedings. New England Complex Systems Institute. Clewley, R. (2004). Dominant-scale analysis for the automatic reduction of high-dimensional ODE systems. In: Y. Bar-Yam (Ed.), ICCS 2004 proceedings. New England Complex Systems Institute.
go back to reference Clewley, R., Rotstein, H. G., & Kopell, N. (2005). A computational tool for the reduction of nonlinear ODE systems possessing multiple scales. Multiscale Modeling and Simulation, 4(3), 732–759.CrossRef Clewley, R., Rotstein, H. G., & Kopell, N. (2005). A computational tool for the reduction of nonlinear ODE systems possessing multiple scales. Multiscale Modeling and Simulation, 4(3), 732–759.CrossRef
go back to reference Clewley, R., Soto-Treviño, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in the transition between spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.PubMedCrossRef Clewley, R., Soto-Treviño, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in the transition between spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.PubMedCrossRef
go back to reference Coiera, E. (1992). The qualitative representation of physical systems. The Knowledge Engineering Review, 7(11), 55–77.CrossRef Coiera, E. (1992). The qualitative representation of physical systems. The Knowledge Engineering Review, 7(11), 55–77.CrossRef
go back to reference Cymbalyuk, G., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: Cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.PubMed Cymbalyuk, G., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: Cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.PubMed
go back to reference Deuflhard, P., & Heroth, J. (1996). Dynamic dimension reduction in ODE models. In: F. Keil, W. Mackens, H. Voß, & J. Werther (Eds.), Scientific computing in chemical engineering (pp. 29–43). Springer. Deuflhard, P., & Heroth, J. (1996). Dynamic dimension reduction in ODE models. In: F. Keil, W. Mackens, H. Voß, & J. Werther (Eds.), Scientific computing in chemical engineering (pp. 29–43). Springer.
go back to reference Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000). How animals move: An integrative view. Science, 288, 100–106.PubMedCrossRef Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000). How animals move: An integrative view. Science, 288, 100–106.PubMedCrossRef
go back to reference Doedel, E., Keller, H. B., Kernevez, J. P. (1991). Auto. International Journal of Bifurcation and Chaos, 1, 493.CrossRef Doedel, E., Keller, H. B., Kernevez, J. P. (1991). Auto. International Journal of Bifurcation and Chaos, 1, 493.CrossRef
go back to reference Druckmann, S., Banitt, Y., Gidon, A., Schurmann, F., Markram, H., & Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models a novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience, 1(1), 7–18.PubMedCrossRef Druckmann, S., Banitt, Y., Gidon, A., Schurmann, F., Markram, H., & Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models a novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience, 1(1), 7–18.PubMedCrossRef
go back to reference Druckmann, S., Berger, T. K., Hill, S., Schurmann, F., & Segev, I. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cyberneticsio, 99, 371–379.CrossRef Druckmann, S., Berger, T. K., Hill, S., Schurmann, F., & Segev, I. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cyberneticsio, 99, 371–379.CrossRef
go back to reference Eckhaus, W. (1979). Asymptotic analysis of singular perturbations. North-Holland, Amsterdam. Eckhaus, W. (1979). Asymptotic analysis of singular perturbations. North-Holland, Amsterdam.
go back to reference Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95, 1259–1264.PubMedCrossRef Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95, 1259–1264.PubMedCrossRef
go back to reference Fishwick, P. A., Narayanan, N. H., Sticklen, J., & Bonarini, A. (1994). A multimodel approach to reasoning and simulation. IEEE Transactions on Systems, Man, and Cybernetics, 24(10), 1433–1449.CrossRef Fishwick, P. A., Narayanan, N. H., Sticklen, J., & Bonarini, A. (1994). A multimodel approach to reasoning and simulation. IEEE Transactions on Systems, Man, and Cybernetics, 24(10), 1433–1449.CrossRef
go back to reference Fitzhugh, R. (1961). Impulses and physiological states in models of nerve membrane. Biophysical Journal, 1, 445–466.PubMedCrossRef Fitzhugh, R. (1961). Impulses and physiological states in models of nerve membrane. Biophysical Journal, 1, 445–466.PubMedCrossRef
go back to reference Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations (Vol. 1). Springer. Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations (Vol. 1). Springer.
go back to reference Hodgkin, A. L., & Huxley, A. F. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. Journal of Physiology, 117, 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. Journal of Physiology, 117, 500–544.PubMed
go back to reference Jones, C. (1994). Geometric singular perturbation theory. In: L. Arnold (Ed.), Dynamical systems, Montecatini Terme. Lecture notes in mathematics (Vol. 1609, pp. 44–118). Berlin: Springer. Jones, C. (1994). Geometric singular perturbation theory. In: L. Arnold (Ed.), Dynamical systems, Montecatini Terme. Lecture notes in mathematics (Vol. 1609, pp. 44–118). Berlin: Springer.
go back to reference de Jong, H., & van Raalte, F. (1999). Comparative envisionment construction: A technique for the comparative analysis of dynamical systems. Artificial Intelligence, 115, 145–214.CrossRef de Jong, H., & van Raalte, F. (1999). Comparative envisionment construction: A technique for the comparative analysis of dynamical systems. Artificial Intelligence, 115, 145–214.CrossRef
go back to reference Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (1999). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America, 97, 1867–1872.CrossRef Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (1999). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America, 97, 1867–1872.CrossRef
go back to reference Lind, D., & Marcus, B. (1995). An introduction to symbolic dynamics and coding. Cambridge University Press. Lind, D., & Marcus, B. (1995). An introduction to symbolic dynamics and coding. Cambridge University Press.
go back to reference Morris, C., & LeCar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRef Morris, C., & LeCar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRef
go back to reference Olypher, A. V., & Calabrese, R. L. (2007). Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. Journal of Neurophysiology, 98, 3749–3758.PubMedCrossRef Olypher, A. V., & Calabrese, R. L. (2007). Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. Journal of Neurophysiology, 98, 3749–3758.PubMedCrossRef
go back to reference Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1353.PubMedCrossRef Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1353.PubMedCrossRef
go back to reference Reynolds, D., Carlson, J. M., & Doyle J. (2002). Design degrees of freedom and mechanisms for complexity. Physical Review. E, 66(016108).CrossRef Reynolds, D., Carlson, J. M., & Doyle J. (2002). Design degrees of freedom and mechanisms for complexity. Physical Review. E, 66(016108).CrossRef
go back to reference Rinzel, J., & Ermentrout, G. B. (1989). Analysis of neural exitability and oscillations. In: C. Koch, & I. Segev (Eds.), Methods in neuronal modelling: From synapses to networks. Cambridge, MA: MIT Press. Rinzel, J., & Ermentrout, G. B. (1989). Analysis of neural exitability and oscillations. In: C. Koch, & I. Segev (Eds.), Methods in neuronal modelling: From synapses to networks. Cambridge, MA: MIT Press.
go back to reference Rubin, J., & Wechselberger, M. (2007). Giant squid—hidden canard: The 3D geometry of the Hodgkin-Huxley model. Biological Cybernetics, 97, 5–32.PubMedCrossRef Rubin, J., & Wechselberger, M. (2007). Giant squid—hidden canard: The 3D geometry of the Hodgkin-Huxley model. Biological Cybernetics, 97, 5–32.PubMedCrossRef
go back to reference van der Schaft, A. (2004). Equivalence of hybrid dynamical systems. In: Proc. of Mathematical Theory of Networks and Systems (MTNS 04). van der Schaft, A. (2004). Equivalence of hybrid dynamical systems. In: Proc. of Mathematical Theory of Networks and Systems (MTNS 04).
go back to reference van der Schaft, A. J., & Schumacher, J. M. (2001). Compositionality issues in discrete, continuous, and hybrid systems. International Journal of Robust and Nonlinear Control, 11, 417–434.CrossRef van der Schaft, A. J., & Schumacher, J. M. (2001). Compositionality issues in discrete, continuous, and hybrid systems. International Journal of Robust and Nonlinear Control, 11, 417–434.CrossRef
go back to reference Smolinski, T. G., Rabbah, P., Soto-Treviño, C., Nadim, F., & Prinz, A. A. (2006). Analysis of biological neurons via modeling and rule mining. International Journal of Information Technology & Intelligent Computing, 1(2), 293–302. Smolinski, T. G., Rabbah, P., Soto-Treviño, C., Nadim, F., & Prinz, A. A. (2006). Analysis of biological neurons via modeling and rule mining. International Journal of Information Technology & Intelligent Computing, 1(2), 293–302.
go back to reference Strogatz, S. H. (2001). Nonlinear dynamics and chaos. Perseus Books Strogatz, S. H. (2001). Nonlinear dynamics and chaos. Perseus Books
go back to reference Suckley, R., & Biktashev, V. (2003). The asymptotic structure of the Hodgkin-Huxley equations. International Journal of Bifurcation and Chaos, 13(12), 3805–3826.CrossRef Suckley, R., & Biktashev, V. (2003). The asymptotic structure of the Hodgkin-Huxley equations. International Journal of Bifurcation and Chaos, 13(12), 3805–3826.CrossRef
go back to reference Tien, J. H., & Guckenheimer, J. (2008). Parameter estimation for bursting neuron models. Journal of Computational Neuroscience, 24(3), 358–373.PubMedCrossRef Tien, J. H., & Guckenheimer, J. (2008). Parameter estimation for bursting neuron models. Journal of Computational Neuroscience, 24(3), 358–373.PubMedCrossRef
go back to reference Villoslada, P., Steinman, L., & Baranzini, S. (2009). Systems biology and its application to the understanding of neurological diseases. Annals of Neurology, 65(2), 124–139.PubMedCrossRef Villoslada, P., Steinman, L., & Baranzini, S. (2009). Systems biology and its application to the understanding of neurological diseases. Annals of Neurology, 65(2), 124–139.PubMedCrossRef
go back to reference Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.PubMed Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.PubMed
go back to reference Zhao, F. (1994). Intelligent computing about complex dynamical systems. Mathematics and Computers in Simulation, 36, 423–432.CrossRef Zhao, F. (1994). Intelligent computing about complex dynamical systems. Mathematics and Computers in Simulation, 36, 423–432.CrossRef
Metadata
Title
Encoding the fine-structured mechanism of action potential dynamics with qualitative motifs
Author
Robert Clewley
Publication date
01-04-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0267-y

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner