Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-04-2011

Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator

Authors: William Erik Sherwood, Ronald Harris-Warrick, John Guckenheimer

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Establishing, maintaining, and modifying the phase relationships between extensor and flexor muscle groups is essential for central pattern generators in the spinal cord to coordinate the hindlimbs well enough to produce the basic walking rhythm. This paper investigates a simplified computational model for the spinal hindlimb central pattern generator (CPG) that is abstracted from experimental data from the rodent spinal cord. This model produces locomotor-like activity with appropriate phase relationships in which right and left muscle groups alternate while extensor and flexor muscle groups alternate. Convergence to this locomotor pattern is slow, however, and the range of parameter values for which the model produces appropriate output is relatively narrow. We examine these aspects of the model’s coordination of left-right activity through investigation of successively more complicated subnetworks, focusing on the role of the synaptic architecture in shaping motoneuron phasing. We find unexpected sensitivity in the phase response properties of individual neurons in response to stimulation and a need for high levels of both inhibition and excitation to achieve the walking rhythm. In the absence of cross-cord excitation, equal levels of ipsilateral and contralateral inhibition result in a strong preference for hopping over walking. Inhibition alone can produce the walking rhythm, but contralateral inhibition must be much stronger than ipsilateral inhibition. Cross-cord excitatory connections significantly enhance convergence to the walking rhythm, which is achieved most rapidly with strong crossed excitation and greater contralateral than ipsilateral inhibition. We discuss the implications of these results for CPG architectures based on unit burst generators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Equivalently described as simultaneous ipsilateral flexor-extensor antisynchrony and contralateral flexor-extensor synchrony.
 
2
For the networks examined in this paper, the period of the burst cycle of each coupled RGN stabilized within a few cycles (typically fewer than four) to a value close (within 0.1–5%) to the period of the uncoupled RGN burst cycle, regardless of whether the phase differences between component neurons converged. The period T here can be taken as the period of the individual (uncoupled) reference burst or as the (stable) period of the coupled burst without any qualitative difference in the results, and only a very slight quantitative difference in the measured phase offsets. The results in the next section use the coupled burst period.
 
Literature
go back to reference Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.PubMedCrossRef Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.PubMedCrossRef
go back to reference Beato, M., & Nistri, A. (1999). Interaction between dishinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord. Journal of Neurophysiology, 82(5), 2029–2038.PubMed Beato, M., & Nistri, A. (1999). Interaction between dishinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord. Journal of Neurophysiology, 82(5), 2029–2038.PubMed
go back to reference Beierholm, U., Nielsen, C. D., Ryge, J., Alstrøm, P., & Kiehn, O. (2001). Characterization of reliability of spike timing in spinal interneurons during oscillating inputs. Journal of Neurophysiology, 86(4), 1858–1868.PubMed Beierholm, U., Nielsen, C. D., Ryge, J., Alstrøm, P., & Kiehn, O. (2001). Characterization of reliability of spike timing in spinal interneurons during oscillating inputs. Journal of Neurophysiology, 86(4), 1858–1868.PubMed
go back to reference Best, J., Borisyuk, A., Rubin, J., Terman, D., & Wechselberger, M. (2005). The dynamic range of bursting in a model respiratory pacemaker network. SIAM Journal of Applied Dynamical Systems, 4(4), 1107–1139.CrossRef Best, J., Borisyuk, A., Rubin, J., Terman, D., & Wechselberger, M. (2005). The dynamic range of bursting in a model respiratory pacemaker network. SIAM Journal of Applied Dynamical Systems, 4(4), 1107–1139.CrossRef
go back to reference Birinyi, A., Viszokay, K., Wéber, I., Kiehn, O., & Antal, M. (2003). Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. Journal of Comparative Neurology, 461, 429–440.PubMedCrossRef Birinyi, A., Viszokay, K., Wéber, I., Kiehn, O., & Antal, M. (2003). Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. Journal of Comparative Neurology, 461, 429–440.PubMedCrossRef
go back to reference Bracci, E., Beato, M., & Nistri, A. (1997). Afferent inputs modulate the activity of a rhythmic burst generator in the rat disinhibited spinal cord in vitro. Journal of Neurophysiology, 77(6), 3157–3167.PubMed Bracci, E., Beato, M., & Nistri, A. (1997). Afferent inputs modulate the activity of a rhythmic burst generator in the rat disinhibited spinal cord in vitro. Journal of Neurophysiology, 77(6), 3157–3167.PubMed
go back to reference Bracci, E., Beato, M., & Nistri, A. (1998). Extracellular K +  induces locomotor-like patterns in the rat spinal cord in vitro: Comparison with NMDA or 5-HT induced activity. Journal of Physiology, 79(5), 2643–2652. Bracci, E., Beato, M., & Nistri, A. (1998). Extracellular K +  induces locomotor-like patterns in the rat spinal cord in vitro: Comparison with NMDA or 5-HT induced activity. Journal of Physiology, 79(5), 2643–2652.
go back to reference Brownstone, R. M., & Wilson, J. M. (2008). Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Research Reviews, 57(1), 64–76.PubMedCrossRef Brownstone, R. M., & Wilson, J. M. (2008). Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Research Reviews, 57(1), 64–76.PubMedCrossRef
go back to reference Buono, P. L. (2001). Models of central pattern generators for quadruped locomotion II. Secondary gaits. Journal of Mathematical Biology, 42, 327–346.PubMedCrossRef Buono, P. L. (2001). Models of central pattern generators for quadruped locomotion II. Secondary gaits. Journal of Mathematical Biology, 42, 327–346.PubMedCrossRef
go back to reference Buono, P. L., & Golubitsky, M. (2001). Models of central pattern generators for quadruped locomotion I. Primary gaits. Journal of Mathematical Biology, 42, 291–326.PubMedCrossRef Buono, P. L., & Golubitsky, M. (2001). Models of central pattern generators for quadruped locomotion I. Primary gaits. Journal of Mathematical Biology, 42, 291–326.PubMedCrossRef
go back to reference Butera, R. J., Rinzel, J., & Smith, J. C. (1999a). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 81, 382–397. Butera, R. J., Rinzel, J., & Smith, J. C. (1999a). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 81, 382–397.
go back to reference Butera, R. J., Rinzel, J., & Smith, J. C. (1999b). Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. Journal of Neurophysiology, 81, 398–415. Butera, R. J., Rinzel, J., & Smith, J. C. (1999b). Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. Journal of Neurophysiology, 81, 398–415.
go back to reference Butt, S. J. B., & Kiehn, O. (2003). Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron, 38, 953–963.PubMedCrossRef Butt, S. J. B., & Kiehn, O. (2003). Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron, 38, 953–963.PubMedCrossRef
go back to reference Butt, S. J. B., Lebret, J. M., & Kiehn, O. (2002). Organization of left-right coordination in the mammalian locomotor network. Brain Research Reviews, 40, 107–117.PubMedCrossRef Butt, S. J. B., Lebret, J. M., & Kiehn, O. (2002). Organization of left-right coordination in the mammalian locomotor network. Brain Research Reviews, 40, 107–117.PubMedCrossRef
go back to reference Butt, S. J. B., Lundfald, L., & Kiehn, O. (2005). EphA4 defines a class of excitatory locomotor-related interneurons. Proceedings of the National Academy of Sciences, 102(39), 14098–14103.CrossRef Butt, S. J. B., Lundfald, L., & Kiehn, O. (2005). EphA4 defines a class of excitatory locomotor-related interneurons. Proceedings of the National Academy of Sciences, 102(39), 14098–14103.CrossRef
go back to reference Cazalets, J. R., & Bertrand, S. (2000). Ubiquity of motor networks in the spinal cord of vertebrates. Brain Research Bulletin, 53(5), 627–634.PubMedCrossRef Cazalets, J. R., & Bertrand, S. (2000). Ubiquity of motor networks in the spinal cord of vertebrates. Brain Research Bulletin, 53(5), 627–634.PubMedCrossRef
go back to reference Cazalets, J. R., Borde, M., & Clarac, F. (1995). Localization and organization of the central pattern generator for hindlimb locomotion in the newborn rat. Journal of Neuroscience, 15(7), 4943–4951.PubMed Cazalets, J. R., Borde, M., & Clarac, F. (1995). Localization and organization of the central pattern generator for hindlimb locomotion in the newborn rat. Journal of Neuroscience, 15(7), 4943–4951.PubMed
go back to reference Cazalets, J. R., Borde, M., & Clarac, F. (1996). The synaptic drive from the spinal locomotor network to motoneurons in the newborn rat. Journal of Neuroscience, 16(1), 298–306.PubMed Cazalets, J. R., Borde, M., & Clarac, F. (1996). The synaptic drive from the spinal locomotor network to motoneurons in the newborn rat. Journal of Neuroscience, 16(1), 298–306.PubMed
go back to reference Christie, K. J., & Whelan, P. J. (2005). Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord. Journal of Neurophysiology, 94, 1554–1564.PubMedCrossRef Christie, K. J., & Whelan, P. J. (2005). Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord. Journal of Neurophysiology, 94, 1554–1564.PubMedCrossRef
go back to reference Cowley, K. C., & Schmidt, B. J. (1997). Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord. Journal of Neurophysiology, 77(1), 247–259.PubMed Cowley, K. C., & Schmidt, B. J. (1997). Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord. Journal of Neurophysiology, 77(1), 247–259.PubMed
go back to reference Crone, S. A., Quinlan, K. A., Zagoraiou, L., Droho, S., Restrepo, C. E., Lundfald, L., et al. (2008). Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron, 60, 70–83.PubMedCrossRef Crone, S. A., Quinlan, K. A., Zagoraiou, L., Droho, S., Restrepo, C. E., Lundfald, L., et al. (2008). Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron, 60, 70–83.PubMedCrossRef
go back to reference Crone, S. A., Zhong, G., Harris-Warrick, R., & Sharma, K. (2009). In mice lacking V2a interneurons, gait depends on speed of locomotion. Journal of Neuroscience, 29(21), 7098–7109.PubMedCrossRef Crone, S. A., Zhong, G., Harris-Warrick, R., & Sharma, K. (2009). In mice lacking V2a interneurons, gait depends on speed of locomotion. Journal of Neuroscience, 29(21), 7098–7109.PubMedCrossRef
go back to reference Daun, S., Rubin, J. E., & Rybak, I. A. (2009). Control of oscillation periods and phase durations in half-center central pattern generators: A comparative mechanistic analysis. Journal of Computational Neuroscience, 27(1), 3–36.PubMedCrossRef Daun, S., Rubin, J. E., & Rybak, I. A. (2009). Control of oscillation periods and phase durations in half-center central pattern generators: A comparative mechanistic analysis. Journal of Computational Neuroscience, 27(1), 3–36.PubMedCrossRef
go back to reference De Vries, G., & Sherman, A. (2005). Beyond synchronization: Modulatory and emergent effects of coupling in square-wave bursting. In S. Coombes & P. C. Bressloff (Eds.), Bursting: The genesis of rhythm in the nervous system (Chap. 4, pp. 243–272). World Scientific. De Vries, G., & Sherman, A. (2005). Beyond synchronization: Modulatory and emergent effects of coupling in square-wave bursting. In S. Coombes & P. C. Bressloff (Eds.), Bursting: The genesis of rhythm in the nervous system (Chap. 4, pp. 243–272). World Scientific.
go back to reference Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.PubMedCrossRef Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.PubMedCrossRef
go back to reference Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (2nd ed., Chap. 1, pp. 1–26). The MIT Press. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (2nd ed., Chap. 1, pp. 1–26). The MIT Press.
go back to reference Dottori, M., Hartley, L., Galea, M., Paxinos, G., Polizzotto, M., Kilpatrick, T., et al. (1998). EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proceedings of the National Academy of Sciences, 95, 13248–13253.CrossRef Dottori, M., Hartley, L., Galea, M., Paxinos, G., Polizzotto, M., Kilpatrick, T., et al. (1998). EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proceedings of the National Academy of Sciences, 95, 13248–13253.CrossRef
go back to reference Eide, A. L., Glover, J., Kjaerulff, O., & Kiehn, O. (1999). Characterization of commissural interneurons in the lumbar region of the neonatal rat spinal cord. Journal of Comparative Neurology, 403, 332–345.PubMedCrossRef Eide, A. L., Glover, J., Kjaerulff, O., & Kiehn, O. (1999). Characterization of commissural interneurons in the lumbar region of the neonatal rat spinal cord. Journal of Comparative Neurology, 403, 332–345.PubMedCrossRef
go back to reference Endo, T., & Kiehn, O. (2008). Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord. Journal of Neurophysiology, 100, 3043–3054.PubMedCrossRef Endo, T., & Kiehn, O. (2008). Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord. Journal of Neurophysiology, 100, 3043–3054.PubMedCrossRef
go back to reference Fortin, D. L., Banghart, M. R., Dunn, T. W., Borges, K., Wagenaar, D. A., Gaudry, Q., et al. (2008). Photochemical control of endogenous ion channels and cellular excitability. Nature Methods, 5(4), 331–338.PubMed Fortin, D. L., Banghart, M. R., Dunn, T. W., Borges, K., Wagenaar, D. A., Gaudry, Q., et al. (2008). Photochemical control of endogenous ion channels and cellular excitability. Nature Methods, 5(4), 331–338.PubMed
go back to reference Golubitsky, M., Josic, K., & Shea-Brown, E. (2006). Winding numbers and average frequencies in phase oscillator networks. Journal of Nonlinear Science, 16, 201–231.CrossRef Golubitsky, M., Josic, K., & Shea-Brown, E. (2006). Winding numbers and average frequencies in phase oscillator networks. Journal of Nonlinear Science, 16, 201–231.CrossRef
go back to reference Golubitsky, M., & Stewart, I. (2006). Nonlinear dynamics of networks: The groupoid formalism. Bulletin of the American Mathematical Society, 43(3), 305–364.CrossRef Golubitsky, M., & Stewart, I. (2006). Nonlinear dynamics of networks: The groupoid formalism. Bulletin of the American Mathematical Society, 43(3), 305–364.CrossRef
go back to reference Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1998). A modular network for legged locomotion. Physica D, 115, 56–72.CrossRef Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1998). A modular network for legged locomotion. Physica D, 115, 56–72.CrossRef
go back to reference Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1999). Symmetry in locomotor central pattern generators and animal gaits. Nature, 401, 693–695.PubMedCrossRef Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1999). Symmetry in locomotor central pattern generators and animal gaits. Nature, 401, 693–695.PubMedCrossRef
go back to reference Goulding, M., & Pfaff, S. L. (2005). Development of circuits that generate simple rhythmic behaviors in vertebrates. Current Opinion in Neurobiology, 15, 14–20.PubMedCrossRef Goulding, M., & Pfaff, S. L. (2005). Development of circuits that generate simple rhythmic behaviors in vertebrates. Current Opinion in Neurobiology, 15, 14–20.PubMedCrossRef
go back to reference Grillner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. In Handbook of physiology. The nervous system. Motor control (Vol. II, Chap. 26, pp. 1179–1236). Bethesda, MD: American Physiological Society. Grillner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. In Handbook of physiology. The nervous system. Motor control (Vol. II, Chap. 26, pp. 1179–1236). Bethesda, MD: American Physiological Society.
go back to reference Grillner, S. (2003). The motor infrastructure: From ion channels to neuronal networks. Nature Reviews Neuroscience, 4, 573–586.PubMedCrossRef Grillner, S. (2003). The motor infrastructure: From ion channels to neuronal networks. Nature Reviews Neuroscience, 4, 573–586.PubMedCrossRef
go back to reference Guckenheimer, J., & Meloon, B. (2000). Computing periodic orbits and their bifurcations with automatic differentiation. SIAM Journal of Scientific Computing, 22(3), 951–985.CrossRef Guckenheimer, J., & Meloon, B. (2000). Computing periodic orbits and their bifurcations with automatic differentiation. SIAM Journal of Scientific Computing, 22(3), 951–985.CrossRef
go back to reference Hairer, E., & Wanner, G. (1991). Solving ordinary differential equations II: Stiff and differential-algebraic problems. In Springer series in computational mathematics. Berlin: Springer. Hairer, E., & Wanner, G. (1991). Solving ordinary differential equations II: Stiff and differential-algebraic problems. In Springer series in computational mathematics. Berlin: Springer.
go back to reference Han, X., & Boyden, E. S. (2007). Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE, 3(e299), 1–12. Han, X., & Boyden, E. S. (2007). Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE, 3(e299), 1–12.
go back to reference Hellgren, J., Grillner, S., & Lansner, A. (1992). Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biological Cybernetics, 68(1), 1–13.PubMedCrossRef Hellgren, J., Grillner, S., & Lansner, A. (1992). Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biological Cybernetics, 68(1), 1–13.PubMedCrossRef
go back to reference Hinckley, C. A., Hartley, R., Wu, L., Todd, A., & Ziskand-Conhaim, L. (2005). Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord. Journal of Neurophysiology, 93, 1439–1449.PubMedCrossRef Hinckley, C. A., Hartley, R., Wu, L., Todd, A., & Ziskand-Conhaim, L. (2005). Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord. Journal of Neurophysiology, 93, 1439–1449.PubMedCrossRef
go back to reference Hochman, S., Jordan, L. M., & MacDonald, J. F. (1994). N-methy-D-aspartate receptor-mediated voltage oscillations in neurons surrounding the central canal in slices of rat spinal cord. Journal of Neurophysiology, 72(2), 565–577.PubMed Hochman, S., Jordan, L. M., & MacDonald, J. F. (1994). N-methy-D-aspartate receptor-mediated voltage oscillations in neurons surrounding the central canal in slices of rat spinal cord. Journal of Neurophysiology, 72(2), 565–577.PubMed
go back to reference Hultborn, H., Conway, B. A., Gossard, J. P., Brownstone, R., Fedirchuk, B., Schomburg, E. D., et al. (1998). How do we approach the locomotor network in the mammalian spinal cord? Annals of the New York Academy of Sciences, 860, 70–82.PubMedCrossRef Hultborn, H., Conway, B. A., Gossard, J. P., Brownstone, R., Fedirchuk, B., Schomburg, E. D., et al. (1998). How do we approach the locomotor network in the mammalian spinal cord? Annals of the New York Academy of Sciences, 860, 70–82.PubMedCrossRef
go back to reference Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171–1266.CrossRef Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171–1266.CrossRef
go back to reference Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annual Review of Neuroscience, 29, 279–306.PubMedCrossRef Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annual Review of Neuroscience, 29, 279–306.PubMedCrossRef
go back to reference Kiehn, O., & Butt, S. J. B. (2003). Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Progress in Neurobiology, 70, 347–361.PubMedCrossRef Kiehn, O., & Butt, S. J. B. (2003). Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Progress in Neurobiology, 70, 347–361.PubMedCrossRef
go back to reference Kiehn, O., & Kjaerulff, O. (1996). Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. Journal of Neurophysiology, 75(4), 1472–1482.PubMed Kiehn, O., & Kjaerulff, O. (1996). Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. Journal of Neurophysiology, 75(4), 1472–1482.PubMed
go back to reference Kiehn, O., & Kjaerulff, O. (1998). Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Annals of the New York Academy of Sciences, 860, 110–129.PubMedCrossRef Kiehn, O., & Kjaerulff, O. (1998). Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Annals of the New York Academy of Sciences, 860, 110–129.PubMedCrossRef
go back to reference Kiehn, O., Kjaerulff, O., Tresch, M. C., & Harris-Warrick, R. M. (2000). Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Research Bulletin, 53(5), 649–659.PubMedCrossRef Kiehn, O., Kjaerulff, O., Tresch, M. C., & Harris-Warrick, R. M. (2000). Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Research Bulletin, 53(5), 649–659.PubMedCrossRef
go back to reference Kiehn, O., & Kullander, K. (2004). Central pattern generators deciphered by molecular genetics. Neuron, 41, 317–321.PubMedCrossRef Kiehn, O., & Kullander, K. (2004). Central pattern generators deciphered by molecular genetics. Neuron, 41, 317–321.PubMedCrossRef
go back to reference Kiehn, O., Quinlan, K. A., Restrepo, C. E., Lundfald, L., Borgius, L., Talpalar, A. E., et al. (2008). Excitatory components of the mammalian locomotor CPG. Brain Research Reviews, 57, 56–63.PubMedCrossRef Kiehn, O., Quinlan, K. A., Restrepo, C. E., Lundfald, L., Borgius, L., Talpalar, A. E., et al. (2008). Excitatory components of the mammalian locomotor CPG. Brain Research Reviews, 57, 56–63.PubMedCrossRef
go back to reference Kiehn, O., Sillar, K. T., Kjaerulff, O., & McDearmid, J. R. (1999). Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord. Journal of Neurophysiology, 82, 741–746.PubMed Kiehn, O., Sillar, K. T., Kjaerulff, O., & McDearmid, J. R. (1999). Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord. Journal of Neurophysiology, 82, 741–746.PubMed
go back to reference Kjaerulff, O., & Kiehn, O. (1993). Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: A lesion study. Journal of Neuroscience, 16(18), 5777–5794. Kjaerulff, O., & Kiehn, O. (1993). Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: A lesion study. Journal of Neuroscience, 16(18), 5777–5794.
go back to reference Kjaerulff, O., & Kiehn, O. (1997). Crossed rhythmic synaptic input to motoneurons during selective activation of the contralateral spinal locomotor network. Journal of Neuroscience, 17(24), 9433–9447.PubMed Kjaerulff, O., & Kiehn, O. (1997). Crossed rhythmic synaptic input to motoneurons during selective activation of the contralateral spinal locomotor network. Journal of Neuroscience, 17(24), 9433–9447.PubMed
go back to reference Kjaerulff, O., & Kiehn, O. (2001). 5-HT modulation of multiple inward rectifiers in motoneurons in intact preparations of the neonatal rat spinal cord. Journal of Neurophysiology, 85, 850–593. Kjaerulff, O., & Kiehn, O. (2001). 5-HT modulation of multiple inward rectifiers in motoneurons in intact preparations of the neonatal rat spinal cord. Journal of Neurophysiology, 85, 850–593.
go back to reference Kremer, E., & Lev-Tov, A. (1997). Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. Journal of Neurophysiology, 77, 1155–1170.PubMed Kremer, E., & Lev-Tov, A. (1997). Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. Journal of Neurophysiology, 77, 1155–1170.PubMed
go back to reference Kullander, K. (2005). Genetics moving to neuronal networks. TRENDS in Neurosciences, 28(5), 239–247.PubMedCrossRef Kullander, K. (2005). Genetics moving to neuronal networks. TRENDS in Neurosciences, 28(5), 239–247.PubMedCrossRef
go back to reference Kullander, K., Butt, S. J. B., Lebret, J. M., Lundfald, L., Restrepo, C., Rydström, A., et al. (2003). Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science, 299(5614), 1889–1892.PubMedCrossRef Kullander, K., Butt, S. J. B., Lebret, J. M., Lundfald, L., Restrepo, C., Rydström, A., et al. (2003). Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science, 299(5614), 1889–1892.PubMedCrossRef
go back to reference Kuo, J. J., Lee, R. H., Zhang, L., & Heckman, C. J. (2006). Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones. Journal of Physiology, 574(3), 819–834.PubMedCrossRef Kuo, J. J., Lee, R. H., Zhang, L., & Heckman, C. J. (2006). Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones. Journal of Physiology, 574(3), 819–834.PubMedCrossRef
go back to reference Lafreniere-Roula, M., & McCrea, D. A. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. Journal of Neurophysiology, 94, 1120–1132.PubMedCrossRef Lafreniere-Roula, M., & McCrea, D. A. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. Journal of Neurophysiology, 94, 1120–1132.PubMedCrossRef
go back to reference Lansner, A., Kotaleski, J. H., & Grillner, S. (1998). Modeling of the spinal neuronal circuitry underlying locomotion in a lower vertebrate. Annals of the New York Academy of Sciences, 860, 239–249.PubMedCrossRef Lansner, A., Kotaleski, J. H., & Grillner, S. (1998). Modeling of the spinal neuronal circuitry underlying locomotion in a lower vertebrate. Annals of the New York Academy of Sciences, 860, 239–249.PubMedCrossRef
go back to reference Lanuza, G. M., Gosgnach, S., Pierani, A., Jessell, T. M., & Goulding, M. (2004). Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron, 42, 375–386.PubMedCrossRef Lanuza, G. M., Gosgnach, S., Pierani, A., Jessell, T. M., & Goulding, M. (2004). Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron, 42, 375–386.PubMedCrossRef
go back to reference Lee, R. H., & Heckman, C. J. (2000). Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. Journal of Neuroscience, 20(17), 6734–6740.PubMed Lee, R. H., & Heckman, C. J. (2000). Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. Journal of Neuroscience, 20(17), 6734–6740.PubMed
go back to reference McCrea, D. A., & Rybak, I. A. (2007). Modeling the mammalian locomotor CPG: Insights from mistakes and perturbations. Progress in Brain Research, 165, 235–253.PubMedCrossRef McCrea, D. A., & Rybak, I. A. (2007). Modeling the mammalian locomotor CPG: Insights from mistakes and perturbations. Progress in Brain Research, 165, 235–253.PubMedCrossRef
go back to reference Nadim, F., Olsen, Ø. H., De Schutter, E., & Calabrese, R. L. (1995). Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. Journal of Computational Neuroscience, 2, 215–235.PubMedCrossRef Nadim, F., Olsen, Ø. H., De Schutter, E., & Calabrese, R. L. (1995). Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. Journal of Computational Neuroscience, 2, 215–235.PubMedCrossRef
go back to reference Nishimaru, H., & Kudo, N. (2000). Formation of the central pattern generator for locomotion in the rat and mouse. Brain Research Bulletin, 53(5), 661–669.PubMedCrossRef Nishimaru, H., & Kudo, N. (2000). Formation of the central pattern generator for locomotion in the rat and mouse. Brain Research Bulletin, 53(5), 661–669.PubMedCrossRef
go back to reference Nishimaru, H., Restrepo, C. E., & Kiehn, O. (2006). Activity of renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice. Journal of Neuroscience, 26(20), 5320–5328.PubMedCrossRef Nishimaru, H., Restrepo, C. E., & Kiehn, O. (2006). Activity of renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice. Journal of Neuroscience, 26(20), 5320–5328.PubMedCrossRef
go back to reference Pearson, K. G., & Rossignol, S. (1991). Fictive motor patterns in chronic spinal cats. Journal of Neurophysiology, 66(6), 1874–1887.PubMed Pearson, K. G., & Rossignol, S. (1991). Fictive motor patterns in chronic spinal cats. Journal of Neurophysiology, 66(6), 1874–1887.PubMed
go back to reference Phipps, E. T. (2003). Taylor series integration of differential algebraic equations: automatic differentiation as a tool for simulating rigid body mechanical systems. Ph.D. thesis, Cornell University. Phipps, E. T. (2003). Taylor series integration of differential algebraic equations: automatic differentiation as a tool for simulating rigid body mechanical systems. Ph.D. thesis, Cornell University.
go back to reference Pinto, C. M. A., & Golubitsky, M. (2006). Central pattern generators for bipedal locomotion. Journal of Mathematical Biology, 53, 474–489.PubMedCrossRef Pinto, C. M. A., & Golubitsky, M. (2006). Central pattern generators for bipedal locomotion. Journal of Mathematical Biology, 53, 474–489.PubMedCrossRef
go back to reference Prinz, A. A., Thirumalai, V., & Marder, E. (2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. Journal of Neuroscience, 23(3), 943–954.PubMed Prinz, A. A., Thirumalai, V., & Marder, E. (2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. Journal of Neuroscience, 23(3), 943–954.PubMed
go back to reference Puskár, Z., & Antal, M. (1997). Localization of last-order premotor interneurons in the lumbar spinal cord of rats. Journal of Comparative Neurology, 389, 377–389.PubMedCrossRef Puskár, Z., & Antal, M. (1997). Localization of last-order premotor interneurons in the lumbar spinal cord of rats. Journal of Comparative Neurology, 389, 377–389.PubMedCrossRef
go back to reference Quinlan, K. A., & Kiehn, O. (2007). Segmental, synaptic actions of commissural interneurons in the mouse spinal cord. Journal of Neuroscience, 27(24), 6521–6530.PubMedCrossRef Quinlan, K. A., & Kiehn, O. (2007). Segmental, synaptic actions of commissural interneurons in the mouse spinal cord. Journal of Neuroscience, 27(24), 6521–6530.PubMedCrossRef
go back to reference Raastad, M., Enríquez-Denton, M., & Kiehn, O. (1998). Synaptic signaling in an active central network only moderately changes passive membrane properties. Proceedings of the National Academy of Sciences, 95(17), 10251–10256.CrossRef Raastad, M., Enríquez-Denton, M., & Kiehn, O. (1998). Synaptic signaling in an active central network only moderately changes passive membrane properties. Proceedings of the National Academy of Sciences, 95(17), 10251–10256.CrossRef
go back to reference Raastad, M., Johnson, B. R., & Kiehn, O. (1997). Analysis of EPSCs and IPSCs carrying rhythmic, locomotor-related information in the isolated spinal cord of the neonatal rat. Journal of Neurophysiology, 78, 1851–1859.PubMed Raastad, M., Johnson, B. R., & Kiehn, O. (1997). Analysis of EPSCs and IPSCs carrying rhythmic, locomotor-related information in the isolated spinal cord of the neonatal rat. Journal of Neurophysiology, 78, 1851–1859.PubMed
go back to reference Raastad, M., & Kiehn, O. (2000). Spike coding during locomotor network activity in ventrally located neurons in the isolated spinal cord from neonatal rat. Journal of Neurophysiology, 83, 2825–2834.PubMed Raastad, M., & Kiehn, O. (2000). Spike coding during locomotor network activity in ventrally located neurons in the isolated spinal cord from neonatal rat. Journal of Neurophysiology, 83, 2825–2834.PubMed
go back to reference Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto & M. Yamaguti (Eds.), Mathematical topics in population biology, morphogenesis and neurosciences. Lecture notes in biomathematics (Vol. 71, pp. 267–281). Berlin: Springer. Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto & M. Yamaguti (Eds.), Mathematical topics in population biology, morphogenesis and neurosciences. Lecture notes in biomathematics (Vol. 71, pp. 267–281). Berlin: Springer.
go back to reference Rinzel, J., & Lee, Y. S. (1987). Dissection of a model for neuronal parabolic bursting. Journal of Mathematical Biology, 25, 653–675.PubMedCrossRef Rinzel, J., & Lee, Y. S. (1987). Dissection of a model for neuronal parabolic bursting. Journal of Mathematical Biology, 25, 653–675.PubMedCrossRef
go back to reference Rowat, P. F., & Selverston, A. I. (1997). Oscillatory mechanisms in pairs of neurons connected with fast inhibitory synapses. Journal of Computational Neuroscience, 4, 103–127.PubMedCrossRef Rowat, P. F., & Selverston, A. I. (1997). Oscillatory mechanisms in pairs of neurons connected with fast inhibitory synapses. Journal of Computational Neuroscience, 4, 103–127.PubMedCrossRef
go back to reference Rybak, I. A., Shevtsova, N. A., Lafreniere-Roula, M., & McCrea, D. A. (2006a). Modelling spinal circuitry involved in locomotor pattern generation: Insights from the effects of afferent stimulation. Journal of Physiology, 577(2), 641–658.PubMedCrossRef Rybak, I. A., Shevtsova, N. A., Lafreniere-Roula, M., & McCrea, D. A. (2006a). Modelling spinal circuitry involved in locomotor pattern generation: Insights from the effects of afferent stimulation. Journal of Physiology, 577(2), 641–658.PubMedCrossRef
go back to reference Rybak, I. A., Stecina, K., Shevtsova, N. A., & McCrea, D. A. (2006b). Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. Journal of Physiology, 577(2), 617–639.PubMedCrossRef Rybak, I. A., Stecina, K., Shevtsova, N. A., & McCrea, D. A. (2006b). Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. Journal of Physiology, 577(2), 617–639.PubMedCrossRef
go back to reference Sherman, A. (1994). Anti-phase, asymmetric and aperiodic oscillations in excitable cells—I. Coupled bursters. Bulletin of Mathematical Biology, 56(5), 811–835.PubMed Sherman, A. (1994). Anti-phase, asymmetric and aperiodic oscillations in excitable cells—I. Coupled bursters. Bulletin of Mathematical Biology, 56(5), 811–835.PubMed
go back to reference Sherwood, W. E. (2008). Phase response in networks of bursting neurons: Modeling central pattern generators. Ph.D. thesis, Cornell University. Sherwood, W. E. (2008). Phase response in networks of bursting neurons: Modeling central pattern generators. Ph.D. thesis, Cornell University.
go back to reference Sherwood, W. E., & Guckenheimer, J. (2010). Dissecting the phase response of a model bursting neuron. SIAM Journal of Applied Dynamical Systems, 9(3), 659–768.CrossRef Sherwood, W. E., & Guckenheimer, J. (2010). Dissecting the phase response of a model bursting neuron. SIAM Journal of Applied Dynamical Systems, 9(3), 659–768.CrossRef
go back to reference Skinner, F. K., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.PubMedCrossRef Skinner, F. K., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.PubMedCrossRef
go back to reference Sqalli-Houssaini, Y., Cazalets, J. R., & Clarac, F. (1993). Oscillatory properties of the central pattern generator for locomotion in neonatal rats. Journal of Neurophysiology, 70(2), 803–813.PubMed Sqalli-Houssaini, Y., Cazalets, J. R., & Clarac, F. (1993). Oscillatory properties of the central pattern generator for locomotion in neonatal rats. Journal of Neurophysiology, 70(2), 803–813.PubMed
go back to reference Stewart, I., Golubitsky, M., & Pivato, M. (2003). Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM Journal of Applied Dynamical Systems, 2(4), 609–646.CrossRef Stewart, I., Golubitsky, M., & Pivato, M. (2003). Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM Journal of Applied Dynamical Systems, 2(4), 609–646.CrossRef
go back to reference Stokke, M. F., Nissen, U. V., Glover, J. C., & Kiehn, O. (2002). Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat. Journal of Comparative Neurology, 447, 349–359.CrossRef Stokke, M. F., Nissen, U. V., Glover, J. C., & Kiehn, O. (2002). Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat. Journal of Comparative Neurology, 447, 349–359.CrossRef
go back to reference Swift, J. W. (1988). Hopf bifurcation with the symmetry of the square. Nonlinearity, 1, 333–377.CrossRef Swift, J. W. (1988). Hopf bifurcation with the symmetry of the square. Nonlinearity, 1, 333–377.CrossRef
go back to reference Szobota, S., Gorostiza, P., Del Bene, F., Wyart, C., Fortin, D. L., Kolstad, K. D., et al. (2007). Remote control of neuronal activity with a light-gated glutamate receptor. Neuron, 54, 535–545.PubMedCrossRef Szobota, S., Gorostiza, P., Del Bene, F., Wyart, C., Fortin, D. L., Kolstad, K. D., et al. (2007). Remote control of neuronal activity with a light-gated glutamate receptor. Neuron, 54, 535–545.PubMedCrossRef
go back to reference Tazerart, S., Viemari, J. C., Darbon, P., Vinay, L., & Brocard, F. (2007). Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. Journal of Neurophysiology, 98, 613–627. doi:10.1152/jn.00316.2007.PubMedCrossRef Tazerart, S., Viemari, J. C., Darbon, P., Vinay, L., & Brocard, F. (2007). Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. Journal of Neurophysiology, 98, 613–627. doi:10.​1152/​jn.​00316.​2007.PubMedCrossRef
go back to reference Tazerart, S., Vinay, L., & Brocard, F. (2008). The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. Journal of Neuroscience, 28(34), 8577–8589.PubMedCrossRef Tazerart, S., Vinay, L., & Brocard, F. (2008). The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. Journal of Neuroscience, 28(34), 8577–8589.PubMedCrossRef
go back to reference Tien, J. H. (2007). Optimization for bursting neural models. Ph.D. thesis, Cornell University. Tien, J. H. (2007). Optimization for bursting neural models. Ph.D. thesis, Cornell University.
go back to reference Tresch, M. C., & Kiehn, O. (1999). Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord. Journal of Neurophysiology, 82(6), 3563–3574.PubMed Tresch, M. C., & Kiehn, O. (1999). Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord. Journal of Neurophysiology, 82(6), 3563–3574.PubMed
go back to reference Tresch, M. C., & Kiehn, O. (2000). Population reconstruction of the locomotor cycle from interneuron activity in the mammalian spinal cord. Journal of Neurophysiology, 83, 1972–1978.PubMed Tresch, M. C., & Kiehn, O. (2000). Population reconstruction of the locomotor cycle from interneuron activity in the mammalian spinal cord. Journal of Neurophysiology, 83, 1972–1978.PubMed
go back to reference Tresch, M. C., & Kiehn, O. (2002). Synchronization of motor neurons during locomotion in the neonatal rat: Predictors and mechanisms. Journal of Neuroscience, 22(22), 9997–10008.PubMed Tresch, M. C., & Kiehn, O. (2002). Synchronization of motor neurons during locomotion in the neonatal rat: Predictors and mechanisms. Journal of Neuroscience, 22(22), 9997–10008.PubMed
go back to reference Wilson, J. M., Dombeck, D. A., Díaz-Ríos, M., Harris-Warrick, R. M., & Brownstone, R. M. (2007). Two-photon calcium imaging of network activity in xfp-expressing neurons in the mouse. Journal of Neurophysiology, 97, 3118–3125.PubMedCrossRef Wilson, J. M., Dombeck, D. A., Díaz-Ríos, M., Harris-Warrick, R. M., & Brownstone, R. M. (2007). Two-photon calcium imaging of network activity in xfp-expressing neurons in the mouse. Journal of Neurophysiology, 97, 3118–3125.PubMedCrossRef
go back to reference Wilson, J. M., Hartley, R., Maxwell, D. J., Todd, A. J., Lieberam, I., Kaltschmidt, J. A., et al. (2005). Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. Journal of Neuroscience, 25(24), 5710–5719.PubMedCrossRef Wilson, J. M., Hartley, R., Maxwell, D. J., Todd, A. J., Lieberam, I., Kaltschmidt, J. A., et al. (2005). Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. Journal of Neuroscience, 25(24), 5710–5719.PubMedCrossRef
go back to reference Yakovenko, S., McCrea, D. A., Stechina, K., & Prochazka, A. (2005). Control of locomotor cycle durations. Journal of Neurophysiology, 94, 1057–1065.PubMedCrossRef Yakovenko, S., McCrea, D. A., Stechina, K., & Prochazka, A. (2005). Control of locomotor cycle durations. Journal of Neurophysiology, 94, 1057–1065.PubMedCrossRef
go back to reference Yokoyama, N., Romero, M. I., Cowan, C. A., Galvan, P., Helmbacher, F., Charnay, P., et al. (2001). Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron, 29(1), 85–97.PubMedCrossRef Yokoyama, N., Romero, M. I., Cowan, C. A., Galvan, P., Helmbacher, F., Charnay, P., et al. (2001). Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron, 29(1), 85–97.PubMedCrossRef
go back to reference Zelenin, P. V., Grillner, S., Orlovsky, G. N., & Deliagina, T. G. (2001). Heterogeneity of the population of command neurons in the lamprey. Journal of Neuroscience, 21(19), 7793–7803.PubMed Zelenin, P. V., Grillner, S., Orlovsky, G. N., & Deliagina, T. G. (2001). Heterogeneity of the population of command neurons in the lamprey. Journal of Neuroscience, 21(19), 7793–7803.PubMed
go back to reference Zhang, F., Wang, L. P., Boyden, E. S., & Deisseroth, K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nature Methods, 3(10), 785–792.PubMedCrossRef Zhang, F., Wang, L. P., Boyden, E. S., & Deisseroth, K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nature Methods, 3(10), 785–792.PubMedCrossRef
go back to reference Zhong, G., Díaz-Ríos, M., & Harris-Warrick, R. M. (2006a). Intrinsic and functional differences among commissural interneurons during fictive locomotion and serotonergic modulation in the neonatal mouse. Journal of Neuroscience, 26(24), 6509–6517.PubMedCrossRef Zhong, G., Díaz-Ríos, M., & Harris-Warrick, R. M. (2006a). Intrinsic and functional differences among commissural interneurons during fictive locomotion and serotonergic modulation in the neonatal mouse. Journal of Neuroscience, 26(24), 6509–6517.PubMedCrossRef
go back to reference Zhong, G., Díaz-Ríos, M., & Harris-Warrick, R. M. (2006b). Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord. Journal of Neurophysiology, 95, 1545–1555.PubMedCrossRef Zhong, G., Díaz-Ríos, M., & Harris-Warrick, R. M. (2006b). Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord. Journal of Neurophysiology, 95, 1545–1555.PubMedCrossRef
go back to reference Zhong, G., Masino, M. A., & Harris-Warrick, R. M. (2007). Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. Journal of Neuroscience, 27(17), 4507–4518.PubMedCrossRef Zhong, G., Masino, M. A., & Harris-Warrick, R. M. (2007). Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. Journal of Neuroscience, 27(17), 4507–4518.PubMedCrossRef
go back to reference Ziskand-Conhaim, L., Wu, L., & Wiesner, E. P. (2008). Persistent sodium current contributes to induced voltage oscillations in locomotor-related Hb9 interneurons in the mouse spinal cord. Journal of Neurophysiology, 100, 2254–2264.CrossRef Ziskand-Conhaim, L., Wu, L., & Wiesner, E. P. (2008). Persistent sodium current contributes to induced voltage oscillations in locomotor-related Hb9 interneurons in the mouse spinal cord. Journal of Neurophysiology, 100, 2254–2264.CrossRef
Metadata
Title
Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator
Authors
William Erik Sherwood
Ronald Harris-Warrick
John Guckenheimer
Publication date
01-04-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0259-y

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner