Skip to main content
Top
Published in: Colloid and Polymer Science 18/2012

01-12-2012 | Original Contribution

Synthesis and characterization of cationic silsesquioxane hybrids by hydrolytic condensation of triethoxysilane derived from 2-(dimethylamino)ethyl acrylate

Authors: Hideharu Mori, Masato Yamada

Published in: Colloid and Polymer Science | Issue 18/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new family of silsesquioxane hybrids was synthesized by hydrolytic condensation of a triethoxysilane precursor, R-Si(OCH2CH3)3, R = -CH2CH2CH2N[CH2CH2COOCH2CH2N(CH3)2]2, derived from 2-(dimethylamino)ethyl acrylate. Condensation of the triethoxysilane precursor proceeded as a homogeneous system in methanol in the presence of aqueous HF solution (3.2 %) to afford the water-soluble silsesquioxane hybrid having a high density of chemically bonded peripheral tertiary amino groups on the outermost surface, as confirmed by nuclear magnetic resonance and Fourier transform infrared analyses. The relatively low polydispersity (M w/M n  = 1.33) and a reasonable molecular weight (M n  = 2700), corresponding to species having 6–12 silicon atoms, were confirmed by size exclusion chromatography. The size of the silsesquioxane hybrid (1.7 nm) was also determined by X-ray diffraction. Co-condensation of tetraethoxysilane (TEOS) with the triethoxysilane precursor was carried out under different feed ratios, and water-soluble products were obtained in the cases of TEOS molar ratio up to 40 %. Quaternization reaction of the tertiary amine-containing hybrids with methyl iodide led to cationic silsesquioxane hybrids containing quaternized amine functionalities, which showed good solubility in polar solvents. Scanning force microscopy measurements indicated the formation of the cationic silsesquioxane hybrids having relatively narrow size distribution with average particle diameter (about 2.0 nm) without aggregation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference McCusker C, Carroll JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem Commun 8:996–998CrossRef McCusker C, Carroll JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem Commun 8:996–998CrossRef
2.
go back to reference Cui L, Chen D, Zhu L (2008) Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid. ACS Nano 2:921–927CrossRef Cui L, Chen D, Zhu L (2008) Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid. ACS Nano 2:921–927CrossRef
3.
go back to reference Zou Q-C, Yan Q-J, Song G-W, Zhang S-L, Wu L-M (2007) Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique. Biosens Bioelectron 22:1461–1465CrossRef Zou Q-C, Yan Q-J, Song G-W, Zhang S-L, Wu L-M (2007) Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique. Biosens Bioelectron 22:1461–1465CrossRef
4.
go back to reference Pu K-Y, Li K, Liu B (2010) Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv Mater 22:643–646CrossRef Pu K-Y, Li K, Liu B (2010) Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv Mater 22:643–646CrossRef
5.
go back to reference Zhao F, Wan C, Bao X, Kandasubramanian B (2009) Modification of montmorillonite with aminopropylisooctyl polyhedral oligomeric silsesquioxane. J Colloid Interface Sci 333:164–170CrossRef Zhao F, Wan C, Bao X, Kandasubramanian B (2009) Modification of montmorillonite with aminopropylisooctyl polyhedral oligomeric silsesquioxane. J Colloid Interface Sci 333:164–170CrossRef
6.
go back to reference Wu GJ, Su ZH (2006) Polyhedral oligomeric silsesquioxane nanocomposite thin films via layer-by-layer electrostatic self-assembly. Chem Mater 18:3726–3732CrossRef Wu GJ, Su ZH (2006) Polyhedral oligomeric silsesquioxane nanocomposite thin films via layer-by-layer electrostatic self-assembly. Chem Mater 18:3726–3732CrossRef
7.
go back to reference Li Y-C, Mannen S, Schulz J, Grunlan JC (2011) Growth and fire protection behavior of POSS-based multilayer thin films. J Mater Chem 21:3060–3069CrossRef Li Y-C, Mannen S, Schulz J, Grunlan JC (2011) Growth and fire protection behavior of POSS-based multilayer thin films. J Mater Chem 21:3060–3069CrossRef
8.
go back to reference Frankamp BL, Fischer NO, Hong R, Srivastava S, Rotello VM (2006) Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoparticles. Chem Mater 18:956–959CrossRef Frankamp BL, Fischer NO, Hong R, Srivastava S, Rotello VM (2006) Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoparticles. Chem Mater 18:956–959CrossRef
9.
go back to reference Nguyen TP, Hesemann P, Tran TML, Moreau JJE (2010) Nanostructured polysilsesquioxanes bearing amine and ammonium groups by micelle templating using anionic surfactants. J Mater Chem 20:3910–3917CrossRef Nguyen TP, Hesemann P, Tran TML, Moreau JJE (2010) Nanostructured polysilsesquioxanes bearing amine and ammonium groups by micelle templating using anionic surfactants. J Mater Chem 20:3910–3917CrossRef
10.
go back to reference Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri AN, Nonami H, Riccardi CC, Williams RJJ (2000) Cagelike precursors of high-molar-mass silsesquioxanes formed by the hydrolytic condensation of trialkoxysilanes. Macromolecules 33:1940–1947CrossRef Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri AN, Nonami H, Riccardi CC, Williams RJJ (2000) Cagelike precursors of high-molar-mass silsesquioxanes formed by the hydrolytic condensation of trialkoxysilanes. Macromolecules 33:1940–1947CrossRef
11.
go back to reference Feher FJ, Budzichowski TA (1995) Silasesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron 14:3239–3253CrossRef Feher FJ, Budzichowski TA (1995) Silasesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron 14:3239–3253CrossRef
12.
go back to reference Voronkov MG, Lavrent’yev VI (1982) Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem 102:199–236CrossRef Voronkov MG, Lavrent’yev VI (1982) Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem 102:199–236CrossRef
13.
go back to reference Pescarmona PP, Maschmeyer T (2001) Oligomeric silsesquioxanes: synthesis, characterization and selected applications. Aust J Chem 54:583–596CrossRef Pescarmona PP, Maschmeyer T (2001) Oligomeric silsesquioxanes: synthesis, characterization and selected applications. Aust J Chem 54:583–596CrossRef
14.
go back to reference Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRef Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRef
15.
go back to reference Sulaiman S, Bhaskar A, Zhang J, Guda R, Goodson T III, Laine RM (2008) Molecules with perfect cubic symmetry as nanobuilding blocks for 3-D assemblies. Elaboration of octavinylsilsesquioxane. Unusual luminescence shifts may indicate extended conjugation involving the silsesquioxane core. Chem Mater 20:5563–5573CrossRef Sulaiman S, Bhaskar A, Zhang J, Guda R, Goodson T III, Laine RM (2008) Molecules with perfect cubic symmetry as nanobuilding blocks for 3-D assemblies. Elaboration of octavinylsilsesquioxane. Unusual luminescence shifts may indicate extended conjugation involving the silsesquioxane core. Chem Mater 20:5563–5573CrossRef
16.
go back to reference Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38:879–884CrossRef Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38:879–884CrossRef
17.
go back to reference Laine RM (2005) Nano-building blocks based on the [OSiO1.5] x (x=6, 8, 10) octasilsesquioxanes. J Mater Chem 15:3725–3744CrossRef Laine RM (2005) Nano-building blocks based on the [OSiO1.5] x (x=6, 8, 10) octasilsesquioxanes. J Mater Chem 15:3725–3744CrossRef
18.
go back to reference Mori H, Lanzendörfer MG, Müller AHE, Klee JE (2004) Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups. Macromolecules 37:5228–5238CrossRef Mori H, Lanzendörfer MG, Müller AHE, Klee JE (2004) Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups. Macromolecules 37:5228–5238CrossRef
19.
go back to reference Mori H, Müller AHE, Klee JE (2003) Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles. J Am Chem Soc 125:3712–3713CrossRef Mori H, Müller AHE, Klee JE (2003) Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles. J Am Chem Soc 125:3712–3713CrossRef
20.
go back to reference Mori H, Lanzendörfer MG, Mülller AHE, Klee JE (2004) Organic–inorganic nano-assembly based on complexation of cationic silica nanoparticles and weak anionic polyelectrolytes in aqueous and alcohol media. Langmuir 20:1934–1944CrossRef Mori H, Lanzendörfer MG, Mülller AHE, Klee JE (2004) Organic–inorganic nano-assembly based on complexation of cationic silica nanoparticles and weak anionic polyelectrolytes in aqueous and alcohol media. Langmuir 20:1934–1944CrossRef
21.
go back to reference Schumacher M, Ruppel M, Kohlbrecher J, Burkhardt M, Plamper F, Drechsler M, Müller AHE (2009) Smart organic–inorganic nanohybrid stars based on star-shaped poly(acrylic acid) and functional silsesquioxane nanoparticles. Polymer 50:1908–1917CrossRef Schumacher M, Ruppel M, Kohlbrecher J, Burkhardt M, Plamper F, Drechsler M, Müller AHE (2009) Smart organic–inorganic nanohybrid stars based on star-shaped poly(acrylic acid) and functional silsesquioxane nanoparticles. Polymer 50:1908–1917CrossRef
22.
go back to reference Muthukrishnan S, Plamper F, Mori H, Müller AHE (2005) Synthesis and characterization of glycomethacrylate hybrid stars from silsesquioxane nanoparticles. Macromolecules 38:10631–10642CrossRef Muthukrishnan S, Plamper F, Mori H, Müller AHE (2005) Synthesis and characterization of glycomethacrylate hybrid stars from silsesquioxane nanoparticles. Macromolecules 38:10631–10642CrossRef
23.
go back to reference Xua J, Shi W (2006) Synthesis and crystallization kinetics of silsesquioxane-based hybrid star poly(ε-caprolactone). Polymer 47:5161–5173CrossRef Xua J, Shi W (2006) Synthesis and crystallization kinetics of silsesquioxane-based hybrid star poly(ε-caprolactone). Polymer 47:5161–5173CrossRef
24.
go back to reference Gunawidjaja R, Huang F, Gumenna M, Klimenko N, Nunnery GA, Shevchenko V, Tannenbaum R, Tsukruk VV (2009) Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds. Langmuir 25:1196–1209CrossRef Gunawidjaja R, Huang F, Gumenna M, Klimenko N, Nunnery GA, Shevchenko V, Tannenbaum R, Tsukruk VV (2009) Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds. Langmuir 25:1196–1209CrossRef
25.
go back to reference Schumacher M, Ruppel M, Yuan J, Schmalz H, Colombani O, Drechsler M, Müller AHE (2009) Smart organic–inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. Langmuir 25:3407–3417CrossRef Schumacher M, Ruppel M, Yuan J, Schmalz H, Colombani O, Drechsler M, Müller AHE (2009) Smart organic–inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. Langmuir 25:3407–3417CrossRef
26.
go back to reference Bliznyuk VN, Tereshchenko TA, Gumenna MA, Gomza YP, Shevchuk AV, Klimenko NS, Shevchenko VV (2008) Structure of segmented poly(ether urethane)s containing amino and hydroxyl functionalized polyhedral oligomeric silsesquioxanes (POSS). Polymer 49:2298–2305CrossRef Bliznyuk VN, Tereshchenko TA, Gumenna MA, Gomza YP, Shevchuk AV, Klimenko NS, Shevchenko VV (2008) Structure of segmented poly(ether urethane)s containing amino and hydroxyl functionalized polyhedral oligomeric silsesquioxanes (POSS). Polymer 49:2298–2305CrossRef
27.
go back to reference Mori H, Miyamura Y, Endo T (2007) Synthesis and characterization of water-soluble silsesquioxane-based nanoparticles by hydrolytic condensation of triethoxysilane derived from 2-hydroxyethyl acrylate. Langmuir 23:9014–9023CrossRef Mori H, Miyamura Y, Endo T (2007) Synthesis and characterization of water-soluble silsesquioxane-based nanoparticles by hydrolytic condensation of triethoxysilane derived from 2-hydroxyethyl acrylate. Langmuir 23:9014–9023CrossRef
28.
go back to reference Mori H, Saito S (2011) Smart organic–inorganic hybrids based on the complexation of amino acid-based polymers and water-soluble silsesquioxane nanoparticles. React Funct Polym 10:1023–1032CrossRef Mori H, Saito S (2011) Smart organic–inorganic hybrids based on the complexation of amino acid-based polymers and water-soluble silsesquioxane nanoparticles. React Funct Polym 10:1023–1032CrossRef
29.
go back to reference Mori H, Saito S, Shoji K (2011) Complexation of amino-acid-based block copolymers with dual thermoresponsive properties and water-soluble silsesquioxane nanoparticles. Macromol Chem Phys 212:2558–2572CrossRef Mori H, Saito S, Shoji K (2011) Complexation of amino-acid-based block copolymers with dual thermoresponsive properties and water-soluble silsesquioxane nanoparticles. Macromol Chem Phys 212:2558–2572CrossRef
30.
go back to reference Mori H, Miyamura Y, Endo T (2009) Synthesis and characterization of water-soluble SiO1.5/TiO2 hybrid nanoparticles by hydrolytic co-condensation of triethoxysilane containing hydroxyl groups. Mater Chem Phys 115:287–295CrossRef Mori H, Miyamura Y, Endo T (2009) Synthesis and characterization of water-soluble SiO1.5/TiO2 hybrid nanoparticles by hydrolytic co-condensation of triethoxysilane containing hydroxyl groups. Mater Chem Phys 115:287–295CrossRef
31.
go back to reference Mori H, Sada C, Konno T, Koichiro Y (2011) Synthesis and characterization of low-refractive-index fluorinated silsesquioxane-based hybrids. Polymer 52:5452–5463CrossRef Mori H, Sada C, Konno T, Koichiro Y (2011) Synthesis and characterization of low-refractive-index fluorinated silsesquioxane-based hybrids. Polymer 52:5452–5463CrossRef
32.
go back to reference Zeng F, Shen Y, Zhu S, Pelton R (2000) Synthesis and characterization of comb-branched polyelectrolytes. 1. Preparation of cationic macromonomer of 2-(dimethylamino)ethyl methacrylate by atom transfer radical polymerization. Macromolecules 33:1628–1635CrossRef Zeng F, Shen Y, Zhu S, Pelton R (2000) Synthesis and characterization of comb-branched polyelectrolytes. 1. Preparation of cationic macromonomer of 2-(dimethylamino)ethyl methacrylate by atom transfer radical polymerization. Macromolecules 33:1628–1635CrossRef
33.
go back to reference Brown JF Jr, Vogt LH Jr, Prescott PI (1964) Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc 86:1120–1125CrossRef Brown JF Jr, Vogt LH Jr, Prescott PI (1964) Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc 86:1120–1125CrossRef
34.
go back to reference Brown JF Jr, Vogt LH Jr (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87:4313–4317CrossRef Brown JF Jr, Vogt LH Jr (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87:4313–4317CrossRef
35.
go back to reference Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem Mater 20:1548–1554CrossRef Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem Mater 20:1548–1554CrossRef
36.
go back to reference Bartsch M, Bornhauser P, Calzaferri G, Imhof R (1994) H8Si8O12 — a model for the vibrational structure of zeolite-A. J Phys Chem 98:2817–2831CrossRef Bartsch M, Bornhauser P, Calzaferri G, Imhof R (1994) H8Si8O12 — a model for the vibrational structure of zeolite-A. J Phys Chem 98:2817–2831CrossRef
37.
go back to reference Jerman I, Vuk AS, Kozelj M, Orel B, Kovac J (2008) A structural and corrosion study of triethoxysilyl functionalized POSS coatings on AA 2024 alloy. Langmuir 24:5029–5037CrossRef Jerman I, Vuk AS, Kozelj M, Orel B, Kovac J (2008) A structural and corrosion study of triethoxysilyl functionalized POSS coatings on AA 2024 alloy. Langmuir 24:5029–5037CrossRef
38.
go back to reference Ro HW, Park ES, Soles CL, Yoon DY (2010) Structure–property relationships for methylsilsesquioxanes. Chem Mater 22:1330–1339CrossRef Ro HW, Park ES, Soles CL, Yoon DY (2010) Structure–property relationships for methylsilsesquioxanes. Chem Mater 22:1330–1339CrossRef
39.
go back to reference Sheen Y-C, Lu C-H, Huang C-F, Kuo S-W, Chang F-C (2008) Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49:4017–4024CrossRef Sheen Y-C, Lu C-H, Huang C-F, Kuo S-W, Chang F-C (2008) Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49:4017–4024CrossRef
40.
go back to reference Laine RM, Roll MF (2011) Polyhedral phenylsilsesquioxanes. Macromolecules 44:1073–1109CrossRef Laine RM, Roll MF (2011) Polyhedral phenylsilsesquioxanes. Macromolecules 44:1073–1109CrossRef
41.
go back to reference Liu C, Liu Y, Shen Z, Xie P, Dai D, Zhang R, He CB, Chung T (2001) Synthesis and characterization of novel alcohol-soluble ladderlike poly(silsesquioxane)s containing side-chain hydroxy groups. Macromol Chem Phys 202:1576–1580CrossRef Liu C, Liu Y, Shen Z, Xie P, Dai D, Zhang R, He CB, Chung T (2001) Synthesis and characterization of novel alcohol-soluble ladderlike poly(silsesquioxane)s containing side-chain hydroxy groups. Macromol Chem Phys 202:1576–1580CrossRef
42.
go back to reference Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS-siloxane copolymers. Chem Mater 8:1250–1259CrossRef Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS-siloxane copolymers. Chem Mater 8:1250–1259CrossRef
43.
go back to reference Su K, Bujalski DR, Eguchi K, Gordon GV, Ou D-L, Chevalier P, Hu SL, Boisvert RP (2005) Low-k interlayer dielectric materials: synthesis and properties of alkoxy-functional silsesquioxanes. Chem Mater 17:2520–2529CrossRef Su K, Bujalski DR, Eguchi K, Gordon GV, Ou D-L, Chevalier P, Hu SL, Boisvert RP (2005) Low-k interlayer dielectric materials: synthesis and properties of alkoxy-functional silsesquioxanes. Chem Mater 17:2520–2529CrossRef
44.
go back to reference Fasce DP, dell’Erba IE, Williams DJ (2005) Synthesis of a soluble functionalized-silica by the hydrolysis and condensation of organotrialkoxysilanes bearing (β-hydroxy) tertiary amine groups with tetraethoxysilane. Polymer 46:6649–6656CrossRef Fasce DP, dell’Erba IE, Williams DJ (2005) Synthesis of a soluble functionalized-silica by the hydrolysis and condensation of organotrialkoxysilanes bearing (β-hydroxy) tertiary amine groups with tetraethoxysilane. Polymer 46:6649–6656CrossRef
Metadata
Title
Synthesis and characterization of cationic silsesquioxane hybrids by hydrolytic condensation of triethoxysilane derived from 2-(dimethylamino)ethyl acrylate
Authors
Hideharu Mori
Masato Yamada
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
Colloid and Polymer Science / Issue 18/2012
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-012-2726-7

Other articles of this Issue 18/2012

Colloid and Polymer Science 18/2012 Go to the issue

Premium Partners