Skip to main content
Top
Published in: Journal of Materials Science 12/2017

22-02-2017 | Original Paper

Synthesis and lithium storage properties of interconnected fullerene-like carbon nanofibers encapsulated with tin nanoparticles

Authors: Li Qiao, Li Qiao, Xiuwan Li, Xiaolei Sun, Hongwei Yue, Deyan He

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interconnected fullerene-like carbon nanofibers encapsulated with tin nanoparticles (Sn@FLCNFs) were synthesized by a facile and scalable electrospinning method using fullerene-like carbon nanoparticles and PVP as carbon sources. SEM and TEM revealed that Sn nanoparticles have been uniformly embedded into the nanofibers. The self-supported Sn@FLCNFs could be directly used as an anode of lithium-ion battery without adding any polymer and binder; it showed a high initial coulombic efficiency. A reversible capacity as high as 846 mA h g−1 remained after 100 cycles at a current density of 0.2 A g−1. When the current density was raised to 1 A g−1, the reversible capacity maintained 656 mA h g−1 after 300 cycles. The excellent electrochemical performance can be attributed to the formation of the efficient Li-ions diffusion paths and highly conductive cross-linked network in the Sn@FLCNFs electrode, and the interconnected carbon framework can prevent the Sn nanoparticles from pulverization and re-aggregation during cycles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef
2.
go back to reference Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef
3.
go back to reference Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sour 163:1003–1039CrossRef Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sour 163:1003–1039CrossRef
4.
go back to reference Ji L, Lin Z, Alcoutlabi M (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energ Environ Sci 4:2682–2699CrossRef Ji L, Lin Z, Alcoutlabi M (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energ Environ Sci 4:2682–2699CrossRef
5.
go back to reference Sun X, Hao G-P, Lu X (2016) High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J Mater Chem A 4:10166–10173CrossRef Sun X, Hao G-P, Lu X (2016) High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J Mater Chem A 4:10166–10173CrossRef
6.
go back to reference Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50CrossRef Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50CrossRef
7.
go back to reference Zhang W-M, Hu J-S, Guo Y-G (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165CrossRef Zhang W-M, Hu J-S, Guo Y-G (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165CrossRef
8.
go back to reference Xu Y, Liu Q, Zhu Y (2013) Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett 13:470–474CrossRef Xu Y, Liu Q, Zhu Y (2013) Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett 13:470–474CrossRef
9.
go back to reference Shen Z, Hu Y, Chen Y (2016) Controllable synthesis of carbon-coated Sn–SnO2–carbon-nanofiber membrane as advanced binder-free anode for lithium-ion batteries. Electrochim Acta 188:661–670CrossRef Shen Z, Hu Y, Chen Y (2016) Controllable synthesis of carbon-coated Sn–SnO2–carbon-nanofiber membrane as advanced binder-free anode for lithium-ion batteries. Electrochim Acta 188:661–670CrossRef
10.
go back to reference Kravchyk K, Protesescu L, Bodnarchuk MI (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J Am Chem Soc 135:4199–4202CrossRef Kravchyk K, Protesescu L, Bodnarchuk MI (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J Am Chem Soc 135:4199–4202CrossRef
11.
go back to reference Qin J, He C, Zhao N (2014) Graphene networks anchored with Sn@Graphene as lithium ion battery anode. ACS Nano 8:1728–1738CrossRef Qin J, He C, Zhao N (2014) Graphene networks anchored with Sn@Graphene as lithium ion battery anode. ACS Nano 8:1728–1738CrossRef
12.
go back to reference Derrien G, Hassoun J, Panero S (2007) Nanostructured Sn–C Composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336–2340CrossRef Derrien G, Hassoun J, Panero S (2007) Nanostructured Sn–C Composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336–2340CrossRef
13.
go back to reference Yu Y, Gu L, Wang C (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Edit 48:6485–6489CrossRef Yu Y, Gu L, Wang C (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Edit 48:6485–6489CrossRef
14.
go back to reference Yu Y, Gu L, Zhu C (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc 131:15984–15985CrossRef Yu Y, Gu L, Zhu C (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc 131:15984–15985CrossRef
15.
go back to reference Guo J, Yang Z, Archer LA (2013) Aerosol assisted synthesis of hierarchical tin-carbon composites and their application as lithium battery anode materials. J Mater Chem A 1:8710–8715CrossRef Guo J, Yang Z, Archer LA (2013) Aerosol assisted synthesis of hierarchical tin-carbon composites and their application as lithium battery anode materials. J Mater Chem A 1:8710–8715CrossRef
16.
go back to reference Hassoun J, Derrien G, Panero S (2008) A nanostructured Sn–C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175CrossRef Hassoun J, Derrien G, Panero S (2008) A nanostructured Sn–C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175CrossRef
17.
go back to reference Sun X, Wang X, Qin Y (2012) Synthesis of novel pompon-like porous SnO2 and its application in lithium-ion battery. Mater Lett 66:193–195CrossRef Sun X, Wang X, Qin Y (2012) Synthesis of novel pompon-like porous SnO2 and its application in lithium-ion battery. Mater Lett 66:193–195CrossRef
18.
go back to reference Liu CK, Lai K, Liu W (2009) Preparation of carbon nanofibres through electrospinning and thermal treatment. Polym Int 58:1341–1349CrossRef Liu CK, Lai K, Liu W (2009) Preparation of carbon nanofibres through electrospinning and thermal treatment. Polym Int 58:1341–1349CrossRef
19.
go back to reference Yu Y, Yang Q, Teng D (2010) Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem Commun 12:1187–1190CrossRef Yu Y, Yang Q, Teng D (2010) Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem Commun 12:1187–1190CrossRef
20.
go back to reference Zhou X, Wan LJ, Guo YG (2013) Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9:2684–2688CrossRef Zhou X, Wan LJ, Guo YG (2013) Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9:2684–2688CrossRef
21.
go back to reference Qiao L, Sun X, Yang Z (2013) Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries. Carbon 54:29–35CrossRef Qiao L, Sun X, Yang Z (2013) Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries. Carbon 54:29–35CrossRef
22.
go back to reference Zhang G, Zhu J, Zeng W (2014) Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energ 9:61–70CrossRef Zhang G, Zhu J, Zeng W (2014) Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energ 9:61–70CrossRef
23.
go back to reference Hwang J, Woo SH, Shim J (2013) One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries. ACS Nano 7:1036–1044CrossRef Hwang J, Woo SH, Shim J (2013) One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries. ACS Nano 7:1036–1044CrossRef
24.
go back to reference Tan Z, Sun Z, Wang H (2013) Fabrication of porous Sn-C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries. J Mater Chem A 1:9462–9468CrossRef Tan Z, Sun Z, Wang H (2013) Fabrication of porous Sn-C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries. J Mater Chem A 1:9462–9468CrossRef
25.
go back to reference Zhang N, Zhao Q, Han X (2014) Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale 6:2827–2832CrossRef Zhang N, Zhao Q, Han X (2014) Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale 6:2827–2832CrossRef
26.
go back to reference Shen Z, Hu Y, Chen Y (2015) Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J Power Sour 278:660–667CrossRef Shen Z, Hu Y, Chen Y (2015) Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J Power Sour 278:660–667CrossRef
27.
go back to reference Youn DH, Heller A, Mullins CB (2016) Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem Mater 28:1343–1347CrossRef Youn DH, Heller A, Mullins CB (2016) Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem Mater 28:1343–1347CrossRef
28.
go back to reference Zhang Y, Jiang L, Wang C (2015) Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries. Nanoscale 7:11940–11944CrossRef Zhang Y, Jiang L, Wang C (2015) Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries. Nanoscale 7:11940–11944CrossRef
29.
go back to reference Wang X, Li X, Sun X (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21:3571–3573CrossRef Wang X, Li X, Sun X (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21:3571–3573CrossRef
30.
go back to reference Laruelle S, Grugeon S, Poizot P (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634CrossRef Laruelle S, Grugeon S, Poizot P (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634CrossRef
31.
go back to reference Fan L, Zhang J, Zhu Y (2014) Comparison between SnSb-C and Sn-C composites as anode materials for lithium-ion batteries. RSC Adv 4:62301–62307CrossRef Fan L, Zhang J, Zhu Y (2014) Comparison between SnSb-C and Sn-C composites as anode materials for lithium-ion batteries. RSC Adv 4:62301–62307CrossRef
Metadata
Title
Synthesis and lithium storage properties of interconnected fullerene-like carbon nanofibers encapsulated with tin nanoparticles
Authors
Li Qiao
Li Qiao
Xiuwan Li
Xiaolei Sun
Hongwei Yue
Deyan He
Publication date
22-02-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0929-5

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners