Skip to main content
Top
Published in: Journal of Materials Science 12/2017

13-03-2017 | Original Paper

X-ray photoelectron spectroscopy (XPS) and radiation shielding parameters investigations for zinc molybdenum borotellurite glasses containing different network modifiers

Authors: G. Lakshminarayana, S. O. Baki, A. Lira, M. I. Sayyed, I. V. Kityk, M. K. Halimah, M. A. Mahdi

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Zinc molybdenum borotellurite glasses containing different network modifiers with the nominal composition of 60 TeO2–10 B2O3–10 MoO3–10 ZnO–10 MO (MO = Li2O, Na2O, K2O, MgO, CaO, and PbO) were prepared by melt quenching method. The X-ray photoelectron spectroscopy (XPS) studies allow to monitor the structural modifications leading to the formation of bridging oxygens (Te–O–Te, B–O–B, Mo–O–Mo, and Te–O–Mo bonds) and nonbridging oxygens (Te = O, Te–OM+, Mo–O bonds in the MoO6 octahedral units, Zn–O bonds from ZnO4) with the addition of alkali (Li, Na, and K), alkaline (Mg, Ca), or heavy metal (Pb) oxides. The Te 3d localized core-levels spectra show an asymmetry due to the existence of different Te-based structural clusters and were fitted with three contributions such as Te ions in TeO4 trigonal bipyramid configuration, Te ions in TeO3 trigonal pyramid configuration and TeO3+1 polyhedra, respectively. The analysis of the Mo 3d spectra indicates prevailingly Mo6+ ions only. The Zn 2p core-level XPS spectra demonstrate that the zinc is mainly coordinated by four oxygen atoms. The essential radiation shielding parameters were studied for the prepared glasses in the photon energy range 1 keV to 100 GeV using WinXCom software program. Parameters like mass attenuation coefficient (μ/ρ), effective atomic number (Z eff), and mean free path (MFP) are evaluated. Further, by using geometric progression method, exposure buildup factor (EBF) values were also calculated in the incident photon energy range 0.015–15 MeV, up to penetration depth of 40 mfp (mean free path). The macroscopic effective removal cross sections (∑R) for fast neutrons have been calculated. The maximum values of μ/ρ and Z eff were found for PbO-introduced glass though it possesses a lower value for MFP and EBF. The obtained results indicate that PbO-based glass is the best radiation shielding material among the studied glasses.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arbuzov VI, Nikonorov NV (2013) Neodymium, erbium and ytterbium laser glasses, chapter 5. In: Denker B, Shklovsky E (eds) Handbook of solid-state lasers: materials, systems and applications. A volume in Woodhead publishing series in electronic and optical materials. Woodhead Publishing Limited, Elsevier, Cambridge, pp 110–138CrossRef Arbuzov VI, Nikonorov NV (2013) Neodymium, erbium and ytterbium laser glasses, chapter 5. In: Denker B, Shklovsky E (eds) Handbook of solid-state lasers: materials, systems and applications. A volume in Woodhead publishing series in electronic and optical materials. Woodhead Publishing Limited, Elsevier, Cambridge, pp 110–138CrossRef
2.
go back to reference Tanabe S (2002) Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C R Chim 5:815–824CrossRef Tanabe S (2002) Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C R Chim 5:815–824CrossRef
3.
go back to reference Jayasimhadri M, Jang K, Lee HS, Chen B, Yi S-S, Jeong J-H (2009) White light generation from Dy3+-doped ZnO–B2O3–P2O5 glasses. J Appl Phys 106:013105CrossRef Jayasimhadri M, Jang K, Lee HS, Chen B, Yi S-S, Jeong J-H (2009) White light generation from Dy3+-doped ZnO–B2O3–P2O5 glasses. J Appl Phys 106:013105CrossRef
4.
go back to reference Chen B, Shen L, Lin H, Pun EYB (2011) Signal amplification in rare-earth doped heavy metal germanium tellurite glass fiber. J Opt Soc Am B 28:2320–2327CrossRef Chen B, Shen L, Lin H, Pun EYB (2011) Signal amplification in rare-earth doped heavy metal germanium tellurite glass fiber. J Opt Soc Am B 28:2320–2327CrossRef
5.
go back to reference Xia F, Liu S, Wang Y, Mao J, Li X, Wang Y, Chen G (2015) Fast and intense green emission of Tb3+ in borosilicate glass modified by Cu+. Sci Rep 5:1–7 Xia F, Liu S, Wang Y, Mao J, Li X, Wang Y, Chen G (2015) Fast and intense green emission of Tb3+ in borosilicate glass modified by Cu+. Sci Rep 5:1–7
6.
go back to reference Lu Y, Cai M, Cao R, Qian S, Xu S, Zhang J (2016) Er3+ doped germanate–tellurite glass for mid-infrared 2.7 μm fiber laser material. J Quant Spectrosc Radiat Trans 171:73–81CrossRef Lu Y, Cai M, Cao R, Qian S, Xu S, Zhang J (2016) Er3+ doped germanate–tellurite glass for mid-infrared 2.7 μm fiber laser material. J Quant Spectrosc Radiat Trans 171:73–81CrossRef
7.
go back to reference Guo H, Wang Y, Gong Y, Yin H, Mo Z, Tang Y, Chi L (2016) Optical band gap and photoluminescence in heavily Tb3+ doped GeO2–B2O3–SiO2–Ga2O3 magneto-optical glasses. J Alloys Compd 686:635–640CrossRef Guo H, Wang Y, Gong Y, Yin H, Mo Z, Tang Y, Chi L (2016) Optical band gap and photoluminescence in heavily Tb3+ doped GeO2–B2O3–SiO2–Ga2O3 magneto-optical glasses. J Alloys Compd 686:635–640CrossRef
8.
go back to reference Pisarski WA, Pisarska J, Dominiak-Dzik G, Ryba-Romanowski W (2004) Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses. J Phys Condens Matter 16:6171–6184CrossRef Pisarski WA, Pisarska J, Dominiak-Dzik G, Ryba-Romanowski W (2004) Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses. J Phys Condens Matter 16:6171–6184CrossRef
9.
go back to reference Rajesh D, Ratnakaram YC, Seshadri M, Balakrishna A (2012) Luminescence properties of Sm3+ impurities in strontium lithium bismuth borate glasses. AIP Conf Proc 1447:581–582CrossRef Rajesh D, Ratnakaram YC, Seshadri M, Balakrishna A (2012) Luminescence properties of Sm3+ impurities in strontium lithium bismuth borate glasses. AIP Conf Proc 1447:581–582CrossRef
10.
go back to reference Annapoorani K, Basavapoornima Ch, Suriya Murthy N, Marimuthu K (2016) Investigations on structural and luminescence behavior of Er3+ doped Lithium Zinc borate glasses for lasers and optical amplifier applications. J Non-Cryst Solids 447:273–282CrossRef Annapoorani K, Basavapoornima Ch, Suriya Murthy N, Marimuthu K (2016) Investigations on structural and luminescence behavior of Er3+ doped Lithium Zinc borate glasses for lasers and optical amplifier applications. J Non-Cryst Solids 447:273–282CrossRef
11.
go back to reference Pawar PP, Munishwar SR, Gedam RS (2016) Physical and optical properties of Dy3+/Pr3+ co-doped lithium borate glasses for W-LED. J Alloys Compd 660:347–355CrossRef Pawar PP, Munishwar SR, Gedam RS (2016) Physical and optical properties of Dy3+/Pr3+ co-doped lithium borate glasses for W-LED. J Alloys Compd 660:347–355CrossRef
12.
go back to reference Oermann MR, Ebendorff-Heidepriem H, Li Y, Foo T-C, Monro TM (2009) Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum–tellurite glass. Opt Express 17:15578–15584CrossRef Oermann MR, Ebendorff-Heidepriem H, Li Y, Foo T-C, Monro TM (2009) Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum–tellurite glass. Opt Express 17:15578–15584CrossRef
13.
go back to reference Feng X, Shi J, Segura M, White NM, Kannan P, Calvez L, Zhang X, Brilland L, Loh WH (2013) Towards water-free tellurite glass fiber for 2–5 μm nonlinear applications. Fibers 1(3):70–81CrossRef Feng X, Shi J, Segura M, White NM, Kannan P, Calvez L, Zhang X, Brilland L, Loh WH (2013) Towards water-free tellurite glass fiber for 2–5 μm nonlinear applications. Fibers 1(3):70–81CrossRef
14.
go back to reference Shen S, Jha A, Liu X, Naftaly M, Bindra K, Bookey HJ, Kar AK (2002) Tellurite glasses for broadband amplifiers and integrated optics. J Am Ceram Soc 85:1391–1395CrossRef Shen S, Jha A, Liu X, Naftaly M, Bindra K, Bookey HJ, Kar AK (2002) Tellurite glasses for broadband amplifiers and integrated optics. J Am Ceram Soc 85:1391–1395CrossRef
15.
go back to reference Madden SJ, Vu KT (2012) High-performance integrated optics with tellurite glasses: status and prospects. Int J Appl Glass Sci 3:289–298CrossRef Madden SJ, Vu KT (2012) High-performance integrated optics with tellurite glasses: status and prospects. Int J Appl Glass Sci 3:289–298CrossRef
16.
go back to reference Toney Fernandez T, Hernandez M, Sotillo B, Eaton SM, Jose G, Osellame R, Jha A, Fernandez P, Solis J (2014) Role of ion migrations in ultrafast laser written tellurite glass waveguides. Opt Express 22:15298–15304CrossRef Toney Fernandez T, Hernandez M, Sotillo B, Eaton SM, Jose G, Osellame R, Jha A, Fernandez P, Solis J (2014) Role of ion migrations in ultrafast laser written tellurite glass waveguides. Opt Express 22:15298–15304CrossRef
17.
go back to reference Desirena H, Schulzgen A, Sabet S, Ramos-Ortiz G, de la Rosa E, Peyghambarian N (2009) Effect of alkali metal oxides R2O (R = Li, Na, K, Rb and Cs) and network intermediate MO (M = Zn, Mg, Ba and Pb) in tellurite glasses. Opt Mater 31:784–789CrossRef Desirena H, Schulzgen A, Sabet S, Ramos-Ortiz G, de la Rosa E, Peyghambarian N (2009) Effect of alkali metal oxides R2O (R = Li, Na, K, Rb and Cs) and network intermediate MO (M = Zn, Mg, Ba and Pb) in tellurite glasses. Opt Mater 31:784–789CrossRef
18.
go back to reference Lakshminarayana G, Kaky KM, Baki SO, Ye S, Lira A, Kityk IV, Mahdi MA (2016) Concentration dependent structural, thermal, and optical features of Pr3+-doped multicomponent tellurite glasses. J Alloys Compd 686:769–784CrossRef Lakshminarayana G, Kaky KM, Baki SO, Ye S, Lira A, Kityk IV, Mahdi MA (2016) Concentration dependent structural, thermal, and optical features of Pr3+-doped multicomponent tellurite glasses. J Alloys Compd 686:769–784CrossRef
19.
go back to reference Rada S, Culea M, Culea E (2008) Structure of TeO2·B2O3 glasses inferred from infrared spectroscopy and DFT calculations. J Non-Cryst Solids 354:5491–5495CrossRef Rada S, Culea M, Culea E (2008) Structure of TeO2·B2O3 glasses inferred from infrared spectroscopy and DFT calculations. J Non-Cryst Solids 354:5491–5495CrossRef
20.
go back to reference Maheshvaran K, Marimuthu K (2012) Concentration dependent Eu3+ doped boro-tellurite glasses—Structural and optical investigations. J Lumin 132:2259–2267CrossRef Maheshvaran K, Marimuthu K (2012) Concentration dependent Eu3+ doped boro-tellurite glasses—Structural and optical investigations. J Lumin 132:2259–2267CrossRef
21.
go back to reference Kaur N, Khanna A, Krishna PSR (2014) Preparation and characterization of boro-tellurite glasses. AIP Conf Proc 1591:802–804CrossRef Kaur N, Khanna A, Krishna PSR (2014) Preparation and characterization of boro-tellurite glasses. AIP Conf Proc 1591:802–804CrossRef
22.
go back to reference Pandarinath MA, Upender G, Rao KN, Babu DS (2016) Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. J Non-Cryst Solids 433:60–67CrossRef Pandarinath MA, Upender G, Rao KN, Babu DS (2016) Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. J Non-Cryst Solids 433:60–67CrossRef
23.
go back to reference Mahraz ZAS, Sahar MR, Ghoshal SK (1072) Band gap and polarizability of boro-tellurite glass: influence of erbium ions. J Mol Struc 2014:238–241 Mahraz ZAS, Sahar MR, Ghoshal SK (1072) Band gap and polarizability of boro-tellurite glass: influence of erbium ions. J Mol Struc 2014:238–241
24.
go back to reference Azlan MN, Halimah MK, Shafinas SZ, Daud WM (2015) Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Mater Express 5:211–218CrossRef Azlan MN, Halimah MK, Shafinas SZ, Daud WM (2015) Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Mater Express 5:211–218CrossRef
25.
go back to reference Chung WJ, Park BJ, Seo HS, Ahn JT, Choi YG (2006) Spontaneous Raman scattering bandwidth broadening of tellurite glasses with MoO3 or WO3. Chem Phys Lett 419:400–404CrossRef Chung WJ, Park BJ, Seo HS, Ahn JT, Choi YG (2006) Spontaneous Raman scattering bandwidth broadening of tellurite glasses with MoO3 or WO3. Chem Phys Lett 419:400–404CrossRef
26.
go back to reference Chung WJ, Choi YG (2010) 1.4 μm emission properties and local environments of Tm3+ ions in tellurite glass modified with MoO3. J Lumin 130:2175–2179CrossRef Chung WJ, Choi YG (2010) 1.4 μm emission properties and local environments of Tm3+ ions in tellurite glass modified with MoO3. J Lumin 130:2175–2179CrossRef
27.
go back to reference Yuan J, Yang Q, Chen DD, Qian Q, Shen SX, Zhang QY, Jiang ZH (2012) Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier. J Appl Phys 111:103511-1–103511-6 Yuan J, Yang Q, Chen DD, Qian Q, Shen SX, Zhang QY, Jiang ZH (2012) Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier. J Appl Phys 111:103511-1–103511-6
28.
go back to reference Lakshminarayana G, Kaky KM, Baki SO, Lira A, Nayar P, Kityk IV, Mahdi MA (2017) Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. J Alloys Compd 690:799–816CrossRef Lakshminarayana G, Kaky KM, Baki SO, Lira A, Nayar P, Kityk IV, Mahdi MA (2017) Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. J Alloys Compd 690:799–816CrossRef
29.
go back to reference Barney ER, Hannon AC, Holland D, Umesaki N, Tatsumisago M (2015) Alkali environments in tellurite glasses. J Non-Cryst Solids 414:33–41CrossRef Barney ER, Hannon AC, Holland D, Umesaki N, Tatsumisago M (2015) Alkali environments in tellurite glasses. J Non-Cryst Solids 414:33–41CrossRef
30.
go back to reference Leal JJ, Narro-García R, Desirena H, Marconi JD, Rodríguez E, Linganna K, De la Rosa E (2015) Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+. J Lumin 162:72–80CrossRef Leal JJ, Narro-García R, Desirena H, Marconi JD, Rodríguez E, Linganna K, De la Rosa E (2015) Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+. J Lumin 162:72–80CrossRef
31.
go back to reference Sayyed MI, Qashou SI, Khattari ZY (2017) Radiation shielding competence of newly developed TeO2–WO3 glasses. J Alloys Compd 696:632–638CrossRef Sayyed MI, Qashou SI, Khattari ZY (2017) Radiation shielding competence of newly developed TeO2–WO3 glasses. J Alloys Compd 696:632–638CrossRef
32.
go back to reference Matori KA, Sayyed MI, Sidek HAA, Zaid MHM, Singh VP (2017) Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses. J Non-Cryst Solids 457:97–103CrossRef Matori KA, Sayyed MI, Sidek HAA, Zaid MHM, Singh VP (2017) Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses. J Non-Cryst Solids 457:97–103CrossRef
33.
go back to reference Waly ESA, Fusco MA, Bourham MA (2016) Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann Nucl Energy 96:26–30CrossRef Waly ESA, Fusco MA, Bourham MA (2016) Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann Nucl Energy 96:26–30CrossRef
34.
go back to reference Kaur K, Singh KJ, Anand V (2016) Structural properties of Bi2O3–B2O3–SiO2–Na2O glasses for gamma ray shielding applications. Radiat Phys Chem 120:63–72CrossRef Kaur K, Singh KJ, Anand V (2016) Structural properties of Bi2O3–B2O3–SiO2–Na2O glasses for gamma ray shielding applications. Radiat Phys Chem 120:63–72CrossRef
35.
go back to reference Chanthima N, Kaewkhao J (2013) Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann Nucl Energy 55:23–28CrossRef Chanthima N, Kaewkhao J (2013) Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann Nucl Energy 55:23–28CrossRef
36.
go back to reference Singh K, Singh H, Sharma G, Gerward L, Khanna A, Kumar R, Nathuram R, Sahota HS (2005) Gamma-ray shielding properties of CaO–SrO–B2O3 glasses. Radiat Phys Chem 72:225–228CrossRef Singh K, Singh H, Sharma G, Gerward L, Khanna A, Kumar R, Nathuram R, Sahota HS (2005) Gamma-ray shielding properties of CaO–SrO–B2O3 glasses. Radiat Phys Chem 72:225–228CrossRef
37.
go back to reference Singh KJ, Kaur S, Kaundal RS (2014) Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat Phys Chem 96:153–157CrossRef Singh KJ, Kaur S, Kaundal RS (2014) Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat Phys Chem 96:153–157CrossRef
38.
go back to reference Gerward L, Guilbert N, Jensen KB, Levring H (2004) WinXCom—a program for calculating X-ray attenuation coefficients. Radiat Phys Chem 71:653–654CrossRef Gerward L, Guilbert N, Jensen KB, Levring H (2004) WinXCom—a program for calculating X-ray attenuation coefficients. Radiat Phys Chem 71:653–654CrossRef
39.
go back to reference Manohara SR, Hanagodimath SM, Thind KS, Gerward L (2010) The effective atomic number revisited in the light of modern photon-interaction cross-section databases. Appl Radiat Isot 68:784–787CrossRef Manohara SR, Hanagodimath SM, Thind KS, Gerward L (2010) The effective atomic number revisited in the light of modern photon-interaction cross-section databases. Appl Radiat Isot 68:784–787CrossRef
40.
go back to reference Manohara SR, Hanagodimath SM (2007) Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV. Nucl Instrum Methods Phys Res B 258:321–328CrossRef Manohara SR, Hanagodimath SM (2007) Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV. Nucl Instrum Methods Phys Res B 258:321–328CrossRef
41.
go back to reference Sayyed MI (2017) Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J Alloys Compd. 695:3191–3197CrossRef Sayyed MI (2017) Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J Alloys Compd. 695:3191–3197CrossRef
42.
go back to reference Mavi B (2012) Experimental investigation of γ-ray attenuation coefficients for granites. Ann Nucl Energy 44:22–25CrossRef Mavi B (2012) Experimental investigation of γ-ray attenuation coefficients for granites. Ann Nucl Energy 44:22–25CrossRef
43.
go back to reference Sayyed MI, Elmahroug Y, Elbashir BO, Issa SAM (2016) Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J Mater Sci Mater Electron. doi:10.1007/s10854-016-6022-z Sayyed MI, Elmahroug Y, Elbashir BO, Issa SAM (2016) Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J Mater Sci Mater Electron. doi:10.​1007/​s10854-016-6022-z
44.
go back to reference Sayyed MI, Elhouichet H (2017) Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3–TeO2) glasses. Radiat Phys Chem 130:335–342CrossRef Sayyed MI, Elhouichet H (2017) Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3–TeO2) glasses. Radiat Phys Chem 130:335–342CrossRef
45.
go back to reference Issa S, Sayyed M, Kurudirek M (2016) Investigation of gamma radiation shielding properties of some zinc tellurite glasses. J Phys Sci 27:97–119CrossRef Issa S, Sayyed M, Kurudirek M (2016) Investigation of gamma radiation shielding properties of some zinc tellurite glasses. J Phys Sci 27:97–119CrossRef
46.
go back to reference Elmahroug Y, Tellili B, Souga C (2014) Determination of shielding parameters for different types of resins. Ann Nucl Energy 63:619–623CrossRef Elmahroug Y, Tellili B, Souga C (2014) Determination of shielding parameters for different types of resins. Ann Nucl Energy 63:619–623CrossRef
47.
go back to reference Profio AE (1979) Radiation shielding and dosimetry. Wiley, New York Profio AE (1979) Radiation shielding and dosimetry. Wiley, New York
48.
go back to reference Chilton AB, Shultis JK, Faw RE (1984) Principles of radiation shielding. Prentice-Hall, Englewood Cliffs Chilton AB, Shultis JK, Faw RE (1984) Principles of radiation shielding. Prentice-Hall, Englewood Cliffs
50.
go back to reference McGuire GE, Schweitzer GK, Carlson TA (1973) Core electron binding energies in some Group IIIA, VB, and VIB compounds. Inorg Chem 12:2450–2453CrossRef McGuire GE, Schweitzer GK, Carlson TA (1973) Core electron binding energies in some Group IIIA, VB, and VIB compounds. Inorg Chem 12:2450–2453CrossRef
51.
go back to reference Charton P, Gengembre L, Armand P (2002) TeO2–WO3 glasses: Infrared, XPS and XANES structural characterizations. J. Solid State Chem. 168:175–183CrossRef Charton P, Gengembre L, Armand P (2002) TeO2–WO3 glasses: Infrared, XPS and XANES structural characterizations. J. Solid State Chem. 168:175–183CrossRef
52.
go back to reference Mekki A, Khattak GD, Wenger LE (2009) XPS and magnetic studies of vanadium tellurite glasses. J Electron Spectrosc Relat Phenom 175:21–26CrossRef Mekki A, Khattak GD, Wenger LE (2009) XPS and magnetic studies of vanadium tellurite glasses. J Electron Spectrosc Relat Phenom 175:21–26CrossRef
53.
go back to reference Babu S, Rajput P, Ratnakaram YC (2016) Compositional-dependent properties of Pr3+-doped multicomponent fluoro-phosphate glasses for visible applications: a photoluminescence study. J Mater Sci 51:8037–8054. doi:10.1007/s10853-016-0073-7 CrossRef Babu S, Rajput P, Ratnakaram YC (2016) Compositional-dependent properties of Pr3+-doped multicomponent fluoro-phosphate glasses for visible applications: a photoluminescence study. J Mater Sci 51:8037–8054. doi:10.​1007/​s10853-016-0073-7 CrossRef
54.
go back to reference Alhalawani AMF, Towler MR (2016) The effect of ZnO ↔ Ta2O5 substitution on the structural and thermal properties of SiO2–ZnO–SrO–CaO–P2O5 glasses. Mater. Charact 114:218–224CrossRef Alhalawani AMF, Towler MR (2016) The effect of ZnO ↔ Ta2O5 substitution on the structural and thermal properties of SiO2–ZnO–SrO–CaO–P2O5 glasses. Mater. Charact 114:218–224CrossRef
55.
go back to reference Khattak GD, Salim MA (2002) X-ray photoelectron spectroscopic studies of zinc–tellurite glasses. J Electron Spectrosc Relat Phenom 123:47–55CrossRef Khattak GD, Salim MA (2002) X-ray photoelectron spectroscopic studies of zinc–tellurite glasses. J Electron Spectrosc Relat Phenom 123:47–55CrossRef
56.
go back to reference Speranza G, Ferrari M, Bettinelli M (1999) X-ray photoemission study of Pr3+ in zinc borate glasses. Philos Mag B 79:2145–2155CrossRef Speranza G, Ferrari M, Bettinelli M (1999) X-ray photoemission study of Pr3+ in zinc borate glasses. Philos Mag B 79:2145–2155CrossRef
57.
go back to reference Mekki A, Holland D, McConville CF, Salim M (1996) An XPS study of iron sodium silicate glass surfaces. J Non-Cryst Solids 208:267–276CrossRef Mekki A, Holland D, McConville CF, Salim M (1996) An XPS study of iron sodium silicate glass surfaces. J Non-Cryst Solids 208:267–276CrossRef
58.
go back to reference Heo J, Lam D, Sigel GH Jr, Mendoza EA, Hensley DA (1992) Spectroscopic analysis of the structure and properties of alkali tellurite glasses. J Am Ceram Soc 75:277–281CrossRef Heo J, Lam D, Sigel GH Jr, Mendoza EA, Hensley DA (1992) Spectroscopic analysis of the structure and properties of alkali tellurite glasses. J Am Ceram Soc 75:277–281CrossRef
59.
go back to reference Hoppe U, Yousef E, Russel C, Neuefeind J, Hannon AC (2002) Structure of vanadium tellurite glasses studied by neutron and X-ray diffraction. Solid State Commun. 123:273–278CrossRef Hoppe U, Yousef E, Russel C, Neuefeind J, Hannon AC (2002) Structure of vanadium tellurite glasses studied by neutron and X-ray diffraction. Solid State Commun. 123:273–278CrossRef
60.
go back to reference Sekiya T, Mochida N, Ohtsuka A, Tonokawa M (1992) Raman spectra of MO1/2–TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses. J Non-Cryst Solids 144:128–144CrossRef Sekiya T, Mochida N, Ohtsuka A, Tonokawa M (1992) Raman spectra of MO1/2–TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses. J Non-Cryst Solids 144:128–144CrossRef
61.
go back to reference Tanaka K, Yoko T, Yamada H, Kamiya K (1988) Structure and Ionic Conductivity of LiCI–Li2O–TeO2 glasses. J Non-Cryst Solids 103:250–256CrossRef Tanaka K, Yoko T, Yamada H, Kamiya K (1988) Structure and Ionic Conductivity of LiCI–Li2O–TeO2 glasses. J Non-Cryst Solids 103:250–256CrossRef
62.
go back to reference Chowdari BVR, Kumari PP (1996) Thermal, electrical and XPS studies of Ag2O·TeO2·P2O5 glasses. J Non-Cryst Solids 197:31–40CrossRef Chowdari BVR, Kumari PP (1996) Thermal, electrical and XPS studies of Ag2O·TeO2·P2O5 glasses. J Non-Cryst Solids 197:31–40CrossRef
63.
go back to reference Bachvarova-Nedelcheva A, Iordanova R, Kostov KL, Yordanov St, Ganev V (2012) Structure and properties of a non-traditional glass containing TeO2, SeO2 and MoO3. Opt Mater 34:1781–1787CrossRef Bachvarova-Nedelcheva A, Iordanova R, Kostov KL, Yordanov St, Ganev V (2012) Structure and properties of a non-traditional glass containing TeO2, SeO2 and MoO3. Opt Mater 34:1781–1787CrossRef
64.
go back to reference Salim MA, Khattak GD, Tabet N, Wenger LE (2003) X-ray photoelectron spectroscopy (XPS) studies of copper–sodium tellurite glasses. J Electron Spectrosc Relat Phenom 128:75–83CrossRef Salim MA, Khattak GD, Tabet N, Wenger LE (2003) X-ray photoelectron spectroscopy (XPS) studies of copper–sodium tellurite glasses. J Electron Spectrosc Relat Phenom 128:75–83CrossRef
65.
go back to reference Mekki A, Khattak GD, Wenger LE (2005) Structural and magnetic properties of MoO3–TeO2 glasses. J Non-Cryst Solids 351:2493–2500CrossRef Mekki A, Khattak GD, Wenger LE (2005) Structural and magnetic properties of MoO3–TeO2 glasses. J Non-Cryst Solids 351:2493–2500CrossRef
66.
go back to reference Moawad HMM, Jain H, El-Mallawany R, Ramadan T, El-Sharbiny M (2002) Electrical conductivity of silver vanadium tellurite glasses. J Am Ceram Soc 85:2655–2659CrossRef Moawad HMM, Jain H, El-Mallawany R, Ramadan T, El-Sharbiny M (2002) Electrical conductivity of silver vanadium tellurite glasses. J Am Ceram Soc 85:2655–2659CrossRef
67.
go back to reference Marjanovic S, Toulouse J, Jain H, Sandmann C, Dierolf V, Kortan AR, Kopylov N, Ahrens RG (2003) Characterization of new erbium-doped tellurite glasses and fibers. J Non-Cryst Solids 322:311–318CrossRef Marjanovic S, Toulouse J, Jain H, Sandmann C, Dierolf V, Kortan AR, Kopylov N, Ahrens RG (2003) Characterization of new erbium-doped tellurite glasses and fibers. J Non-Cryst Solids 322:311–318CrossRef
68.
go back to reference Pal M, Hirota K, Tsujigami Y, Sakata H (2001) Structural and electrical properties of MoO3–TeO2 glasses. J Phys D Appl Phys 34:459–464CrossRef Pal M, Hirota K, Tsujigami Y, Sakata H (2001) Structural and electrical properties of MoO3–TeO2 glasses. J Phys D Appl Phys 34:459–464CrossRef
69.
go back to reference Zatsepin DA, Zatsepin AF, Boukhvalov DW, Kurmaev EZ, Pchelkina ZV, Gavrilov NV (2016) Electronic structure and photoluminescence properties of Zn-ion implanted silica glass before and after thermal annealing. J Non-Cryst Solids 432(B):183–188CrossRef Zatsepin DA, Zatsepin AF, Boukhvalov DW, Kurmaev EZ, Pchelkina ZV, Gavrilov NV (2016) Electronic structure and photoluminescence properties of Zn-ion implanted silica glass before and after thermal annealing. J Non-Cryst Solids 432(B):183–188CrossRef
70.
go back to reference Medda MP, Piccaluga G, Pinna G, Bettinelli M, Cormier G (1994) Coordination of Eu3+ ions in a phosphate glass by X-ray diffraction. Z. Naturforsch 49(a):977–982 Medda MP, Piccaluga G, Pinna G, Bettinelli M, Cormier G (1994) Coordination of Eu3+ ions in a phosphate glass by X-ray diffraction. Z. Naturforsch 49(a):977–982
71.
go back to reference Hurt JC, Phillips CJ (1970) Structural role of zinc oxide in glasses in the system Na2O–ZnO–SiO2. J Am Ceram Soc 53:269–273CrossRef Hurt JC, Phillips CJ (1970) Structural role of zinc oxide in glasses in the system Na2O–ZnO–SiO2. J Am Ceram Soc 53:269–273CrossRef
72.
go back to reference Bashter II (1997) Calculation of radiation attenuation coefficients for shielding concretes. Ann Nucl Energy 24:1389–1401CrossRef Bashter II (1997) Calculation of radiation attenuation coefficients for shielding concretes. Ann Nucl Energy 24:1389–1401CrossRef
73.
go back to reference Singh VP, Badiger NM, Kaewkhao J (2014) Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J Non-Cryst Solids 404:167–173CrossRef Singh VP, Badiger NM, Kaewkhao J (2014) Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J Non-Cryst Solids 404:167–173CrossRef
74.
go back to reference Singh VP, Badiger NM (2015) Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys Chem 41:276–283CrossRef Singh VP, Badiger NM (2015) Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys Chem 41:276–283CrossRef
75.
go back to reference Sayyed MI (2016) Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can J Phys 94:1133–1137CrossRef Sayyed MI (2016) Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can J Phys 94:1133–1137CrossRef
Metadata
Title
X-ray photoelectron spectroscopy (XPS) and radiation shielding parameters investigations for zinc molybdenum borotellurite glasses containing different network modifiers
Authors
G. Lakshminarayana
S. O. Baki
A. Lira
M. I. Sayyed
I. V. Kityk
M. K. Halimah
M. A. Mahdi
Publication date
13-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0974-0

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners