Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Synthesis and Molecular Structures of Endohedral Fullerenes

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter gives an introduction into the field of endohedral fullerenes and describes development in the synthesis and molecular structure determination of these compounds. An overview of elements capable of being encapsulated within the fullerene cage is given. Different types of endohedral metallofullerenes and clusterfullerenes as well as peculiarities in the carbon cage isomerism caused by encapsulated species are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Heath JR, O’Brien SC, Zhang Q et al (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107(25):7779–7780CrossRef Heath JR, O’Brien SC, Zhang Q et al (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107(25):7779–7780CrossRef
2.
go back to reference Cioslowski J, Fleischmann ED (1991) Endohedral complexes—atoms and ions inside the C60 Cage. J Chem Phys 94(5):3730–3734CrossRef Cioslowski J, Fleischmann ED (1991) Endohedral complexes—atoms and ions inside the C60 Cage. J Chem Phys 94(5):3730–3734CrossRef
3.
go back to reference Weiske T, Bohme DK, Hrusak J et al (1991) Endohedral cluster compounds—inclusion of helium within C60 + and C70 + through collision experiments. Angew Chem-Int Edit Engl 30(7):884–886 Weiske T, Bohme DK, Hrusak J et al (1991) Endohedral cluster compounds—inclusion of helium within C60 + and C70 + through collision experiments. Angew Chem-Int Edit Engl 30(7):884–886
4.
go back to reference Kratschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60—a new form of carbon. Nature 347(6291):354–358CrossRef Kratschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60—a new form of carbon. Nature 347(6291):354–358CrossRef
5.
go back to reference Chai Y, Guo T, Jin CM et al (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568CrossRef Chai Y, Guo T, Jin CM et al (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568CrossRef
6.
go back to reference Alvarez MM, Gillan EG, Holczer K et al (1991) La2C80—a soluble dimetallofullerene. J Phys Chem 95(26):10561–10563CrossRef Alvarez MM, Gillan EG, Holczer K et al (1991) La2C80—a soluble dimetallofullerene. J Phys Chem 95(26):10561–10563CrossRef
7.
go back to reference Johnson RD, Devries MS, Salem J et al (1992) Electron-paramagnetic resonance studies of lanthanum-containing C82. Nature 355(6357):239–240CrossRef Johnson RD, Devries MS, Salem J et al (1992) Electron-paramagnetic resonance studies of lanthanum-containing C82. Nature 355(6357):239–240CrossRef
8.
go back to reference Dunk PW, Kaiser NK, Hendrickson CL et al (2012) Closed network growth of fullerenes. Nat Commun 3:855CrossRef Dunk PW, Kaiser NK, Hendrickson CL et al (2012) Closed network growth of fullerenes. Nat Commun 3:855CrossRef
9.
go back to reference Dunk PW, Mulet-Gas M, Nakanishi Y et al (2014) Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer. Nat Commun 5:5844CrossRef Dunk PW, Mulet-Gas M, Nakanishi Y et al (2014) Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer. Nat Commun 5:5844CrossRef
10.
go back to reference Tellgmann R, Krawez N, Lin SH et al (1996) Endohedral fullerene production. Nature 382(6590):407–408CrossRef Tellgmann R, Krawez N, Lin SH et al (1996) Endohedral fullerene production. Nature 382(6590):407–408CrossRef
11.
go back to reference Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(8):678–683CrossRef Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(8):678–683CrossRef
12.
go back to reference Wang CR, Kai T, Tomiyama T et al (2001) A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew Chem-Int Edit 40(2):397–399CrossRef Wang CR, Kai T, Tomiyama T et al (2001) A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew Chem-Int Edit 40(2):397–399CrossRef
13.
go back to reference Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401(6748):55–57CrossRef Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401(6748):55–57CrossRef
14.
go back to reference Dunsch L, Krause M, Noack J et al (2004) Endohedral nitride cluster fullerenes - Formation and spectroscopic analysis of L3−x MxN@C2n (0 ≤ x ≤3; n = 39,40). J Phys Chem Solids 65(2–3):309–315CrossRef Dunsch L, Krause M, Noack J et al (2004) Endohedral nitride cluster fullerenes - Formation and spectroscopic analysis of L3−x MxN@C2n (0 ≤ x ≤3; n = 39,40). J Phys Chem Solids 65(2–3):309–315CrossRef
15.
go back to reference Liu F, Guan J, Wei T et al (2013) A series of inorganic solid nitrogen sources for the synthesis of metal nitride clusterfullerenes: the dependence of production yield on the oxidation state of nitrogen and counter ion. Inorg Chem 52(7):3814–3822CrossRef Liu F, Guan J, Wei T et al (2013) A series of inorganic solid nitrogen sources for the synthesis of metal nitride clusterfullerenes: the dependence of production yield on the oxidation state of nitrogen and counter ion. Inorg Chem 52(7):3814–3822CrossRef
16.
go back to reference Yang S, Zhang L, Zhang W et al (2010) A facile route to metal nitride clusterfullerenes by using guanidinium salts: a selective organic solid as the nitrogen source. Chem-Eur J 16(41):12398–12405CrossRef Yang S, Zhang L, Zhang W et al (2010) A facile route to metal nitride clusterfullerenes by using guanidinium salts: a selective organic solid as the nitrogen source. Chem-Eur J 16(41):12398–12405CrossRef
17.
go back to reference Svitova A, Braun K, Popov AA et al (2012) A platform for specific delivery of lanthanide-scandium mixed-metal cluster fullerenes into target cells. Chem Open 1(5):207–210 Svitova A, Braun K, Popov AA et al (2012) A platform for specific delivery of lanthanide-scandium mixed-metal cluster fullerenes into target cells. Chem Open 1(5):207–210
18.
go back to reference Yang S, Liu F, Chen C et al (2011) Fullerenes encaging metal clusters-clusterfullerenes. Chem Commun 47(43):11822–11839CrossRef Yang S, Liu F, Chen C et al (2011) Fullerenes encaging metal clusters-clusterfullerenes. Chem Commun 47(43):11822–11839CrossRef
19.
go back to reference Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113(8):5989–6113CrossRef Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113(8):5989–6113CrossRef
20.
go back to reference Lu X, Feng L, Akasaka T et al (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41(23):7723–7760CrossRef Lu X, Feng L, Akasaka T et al (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41(23):7723–7760CrossRef
21.
go back to reference Stevenson S, Thompson MC, Coumbe HL et al (2007) Chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@C80 metallic nitride fullerenes. J Am Chem Soc 129(51):16257–16262CrossRef Stevenson S, Thompson MC, Coumbe HL et al (2007) Chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@C80 metallic nitride fullerenes. J Am Chem Soc 129(51):16257–16262CrossRef
22.
go back to reference Junghans K, Rosenkranz M, Popov AA (2016) Sc3CH@C80: selective 13C enrichment of the central carbon atom. Chem Commun 52:6561–6564CrossRef Junghans K, Rosenkranz M, Popov AA (2016) Sc3CH@C80: selective 13C enrichment of the central carbon atom. Chem Commun 52:6561–6564CrossRef
23.
go back to reference Junghans K, Schlesier C, Kostanyan A et al (2015) Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: selective synthesis of the single-molecule magnet Dy2TiC@C80 and its congener Dy2TiC2@C80. Angew Chem-Int Edit Engl 54(45):13411–13415CrossRef Junghans K, Schlesier C, Kostanyan A et al (2015) Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: selective synthesis of the single-molecule magnet Dy2TiC@C80 and its congener Dy2TiC2@C80. Angew Chem-Int Edit Engl 54(45):13411–13415CrossRef
24.
go back to reference Feng Y, Wang T, Wu J et al (2014) Electron-spin excitation by implanting hydrogen into metallofullerene: the synthesis and spectroscopic characterization of Sc4C2H@I h -C80. Chem Commun 50(81):12166–12168CrossRef Feng Y, Wang T, Wu J et al (2014) Electron-spin excitation by implanting hydrogen into metallofullerene: the synthesis and spectroscopic characterization of Sc4C2H@I h -C80. Chem Commun 50(81):12166–12168CrossRef
25.
go back to reference Zhang M, Hao Y, Li X et al (2014) Facile synthesis of an extensive family of Sc2O@C2n (n = 35-47) and chemical insight into the smallest member of Sc2O@C2(7892)-C70. J Phys Chem C 118(49):28883–28889CrossRef Zhang M, Hao Y, Li X et al (2014) Facile synthesis of an extensive family of Sc2O@C2n (n = 35-47) and chemical insight into the smallest member of Sc2O@C2(7892)-C70. J Phys Chem C 118(49):28883–28889CrossRef
26.
go back to reference Chen N, Chaur MN, Moore C et al (2010) Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40-50) by the introduction of SO2. Chem Commun 46(26):4818–4820CrossRef Chen N, Chaur MN, Moore C et al (2010) Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40-50) by the introduction of SO2. Chem Commun 46(26):4818–4820CrossRef
27.
go back to reference Dunsch L, Yang S, Zhang L et al (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132(15):5413–5421CrossRef Dunsch L, Yang S, Zhang L et al (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132(15):5413–5421CrossRef
28.
go back to reference Yang SF, Kalbac M, Popov A et al (2006) A facile route to the non-IPR fullerene Sc3N@C68: synthesis, spectroscopic characterization, and density functional theory computations (IPR = isolated pentagon rule). Chem-Eur J 12(30):7856–7863CrossRef Yang SF, Kalbac M, Popov A et al (2006) A facile route to the non-IPR fullerene Sc3N@C68: synthesis, spectroscopic characterization, and density functional theory computations (IPR = isolated pentagon rule). Chem-Eur J 12(30):7856–7863CrossRef
29.
go back to reference Bolskar RD, Alford JM (2003) Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem Commun 11:1292–1293CrossRef Bolskar RD, Alford JM (2003) Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem Commun 11:1292–1293CrossRef
30.
go back to reference Tsuchiya T, Wakahara T, Shirakura S et al (2004) Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem Mat 16(22):4343–4346CrossRef Tsuchiya T, Wakahara T, Shirakura S et al (2004) Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem Mat 16(22):4343–4346CrossRef
31.
go back to reference Ge ZX, Duchamp JC, Cai T et al (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J Am Chem Soc 127(46):16292–16298CrossRef Ge ZX, Duchamp JC, Cai T et al (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J Am Chem Soc 127(46):16292–16298CrossRef
32.
go back to reference Stevenson S, Harich K, Yu H et al (2006) Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3N@C80 metallofullerenes. J Am Chem Soc 128(27):8829–8835CrossRef Stevenson S, Harich K, Yu H et al (2006) Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3N@C80 metallofullerenes. J Am Chem Soc 128(27):8829–8835CrossRef
33.
go back to reference Stevenson S, Mackey MA, Pickens JE et al (2009) Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with lewis acids and use as an effective purification method. Inorg Chem 48(24):11685–11690CrossRef Stevenson S, Mackey MA, Pickens JE et al (2009) Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with lewis acids and use as an effective purification method. Inorg Chem 48(24):11685–11690CrossRef
34.
go back to reference Akiyama K, Hamano T, Nakanishi Y et al (2012) Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl4 lewis acid. J Am Chem Soc 134(23):9762–9767CrossRef Akiyama K, Hamano T, Nakanishi Y et al (2012) Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl4 lewis acid. J Am Chem Soc 134(23):9762–9767CrossRef
35.
go back to reference Cerón MR, Li F-F, Echegoyen L (2013) An efficient method to separate Sc3N@C80 I h and D 5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium [Fe(COCH3C5H4)Cp]+. Chem-Eur J 19(23):7410–7415CrossRef Cerón MR, Li F-F, Echegoyen L (2013) An efficient method to separate Sc3N@C80 I h and D 5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium [Fe(COCH3C5H4)Cp]+. Chem-Eur J 19(23):7410–7415CrossRef
36.
go back to reference Yang SF, Popov AA, Dunsch L (2008) Large mixed metal nitride clusters encapsulated in a small cage: the confinement of the C68-based clusterfullerenes. Chem Commun 2885–2887 Yang SF, Popov AA, Dunsch L (2008) Large mixed metal nitride clusters encapsulated in a small cage: the confinement of the C68-based clusterfullerenes. Chem Commun 2885–2887
37.
go back to reference Campbell EEB, Tellgmann R, Krawez N et al (1997) Production and LDMS characterisation of endohedral alkali-fullerene films. J Phys Chem Solids 58(11):1763–1769CrossRef Campbell EEB, Tellgmann R, Krawez N et al (1997) Production and LDMS characterisation of endohedral alkali-fullerene films. J Phys Chem Solids 58(11):1763–1769CrossRef
38.
go back to reference Gromov A, Kratschmer W, Krawez N et al (1997) Extraction and HPLC purification of Li@C60/70. Chem Commun 20:2003–2004CrossRef Gromov A, Kratschmer W, Krawez N et al (1997) Extraction and HPLC purification of Li@C60/70. Chem Commun 20:2003–2004CrossRef
39.
go back to reference Kubozono Y, Ohta T, Hayashibara T et al (1995) Preparation and extraction of Ca@C60. Chem Lett 6:457–458CrossRef Kubozono Y, Ohta T, Hayashibara T et al (1995) Preparation and extraction of Ca@C60. Chem Lett 6:457–458CrossRef
40.
go back to reference Xu ZD, Nakane T, Shinohara H (1996) Production and isolation of Ca@C82 (I-IV) and Ca@C84 (I, II) metallofullerenes. J Am Chem Soc 118(45):11309–11310CrossRef Xu ZD, Nakane T, Shinohara H (1996) Production and isolation of Ca@C82 (I-IV) and Ca@C84 (I, II) metallofullerenes. J Am Chem Soc 118(45):11309–11310CrossRef
41.
go back to reference John T, Dennis S, Shinohara H (1998) Production, isolation, and characterization of group-2 metal-containing endohedral metallofullerenes. Appl Phys A-Mater Sci Process 66(3):243–247CrossRef John T, Dennis S, Shinohara H (1998) Production, isolation, and characterization of group-2 metal-containing endohedral metallofullerenes. Appl Phys A-Mater Sci Process 66(3):243–247CrossRef
42.
go back to reference Kuran P, Krause M, Bartl A et al (1998) Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene. Chem Phys Lett 292(4–6):580–586CrossRef Kuran P, Krause M, Bartl A et al (1998) Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene. Chem Phys Lett 292(4–6):580–586CrossRef
43.
go back to reference Kirbach U, Dunsch L (1996) The existence of stable Tm@C82 isomers. Angew Chem-Int Edit Engl 35(20):2380–2383CrossRef Kirbach U, Dunsch L (1996) The existence of stable Tm@C82 isomers. Angew Chem-Int Edit Engl 35(20):2380–2383CrossRef
44.
go back to reference Xu JX, Lu X, Zhou XH et al (2004) Synthesis, isolation, and spectroscopic characterization of ytterbium-containing metallofullerenes. Chem Mat 16(15):2959–2964CrossRef Xu JX, Lu X, Zhou XH et al (2004) Synthesis, isolation, and spectroscopic characterization of ytterbium-containing metallofullerenes. Chem Mat 16(15):2959–2964CrossRef
45.
go back to reference Okazaki T, Lian YF, Gu ZN et al (2000) Isolation and spectroscopic characterization of Sm-containing metallofullerenes. Chem Phys Lett 320(5–6):435–440CrossRef Okazaki T, Lian YF, Gu ZN et al (2000) Isolation and spectroscopic characterization of Sm-containing metallofullerenes. Chem Phys Lett 320(5–6):435–440CrossRef
46.
go back to reference Yang H, Jin H, Hong B et al (2011) Large endohedral fullerenes containing two metal ions, Sm2@D 2(35)-C88, Sm2@C 1(21)-C90, and Sm2@D 3(85)-C92, and their relationship to endohedral fullerenes containing two gadolinium ions. J Am Chem Soc 133(42):16911–16919CrossRef Yang H, Jin H, Hong B et al (2011) Large endohedral fullerenes containing two metal ions, Sm2@D 2(35)-C88, Sm2@C 1(21)-C90, and Sm2@D 3(85)-C92, and their relationship to endohedral fullerenes containing two gadolinium ions. J Am Chem Soc 133(42):16911–16919CrossRef
47.
go back to reference Mercado BQ, Jiang A, Yang H et al (2009) Isolation and structural characterization of the molecular nanocapsule Sm2@D 3d (822)-C104. Angew Chem-Int Edit Engl 48(48):9114–9116CrossRef Mercado BQ, Jiang A, Yang H et al (2009) Isolation and structural characterization of the molecular nanocapsule Sm2@D 3d (822)-C104. Angew Chem-Int Edit Engl 48(48):9114–9116CrossRef
48.
go back to reference Xu W, Feng L, Calvaresi M et al (2013) An experimentally observed trimetallofullerene Sm3@I h -C80: Encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135(11):4187–4190CrossRef Xu W, Feng L, Calvaresi M et al (2013) An experimentally observed trimetallofullerene Sm3@I h -C80: Encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135(11):4187–4190CrossRef
49.
go back to reference Guo T, Diener MD, Chai Y et al (1992) Uranium stabilization of C28—a tetravalent fullerene. Science 257(5077):1661–1664CrossRef Guo T, Diener MD, Chai Y et al (1992) Uranium stabilization of C28—a tetravalent fullerene. Science 257(5077):1661–1664CrossRef
50.
go back to reference Dunk PW, Kaiser NK, Mulet-Gas M et al (2012) The smallest stable fullerene, M@C28 (M = Ti, Zr, U): stabilization and growth from carbon vapor. J Am Chem Soc 134(22):9380–9389CrossRef Dunk PW, Kaiser NK, Mulet-Gas M et al (2012) The smallest stable fullerene, M@C28 (M = Ti, Zr, U): stabilization and growth from carbon vapor. J Am Chem Soc 134(22):9380–9389CrossRef
51.
go back to reference Cao BP, Hasegawa M, Okada K et al (2001) EELS and 13C NMR characterization of pure Ti2@C80 metallofullerene. J Am Chem Soc 123(39):9679–9680CrossRef Cao BP, Hasegawa M, Okada K et al (2001) EELS and 13C NMR characterization of pure Ti2@C80 metallofullerene. J Am Chem Soc 123(39):9679–9680CrossRef
52.
go back to reference Cao BP, Suenaga K, Okazaki T et al (2002) Production, isolation, and EELS characterization of Ti2@C84 dititanium metallofullerenes. J Phys Chem B 106(36):9295–9298CrossRef Cao BP, Suenaga K, Okazaki T et al (2002) Production, isolation, and EELS characterization of Ti2@C84 dititanium metallofullerenes. J Phys Chem B 106(36):9295–9298CrossRef
53.
go back to reference Tan K, Lu X (2005) Ti2C80 is more likely a titanium carbide endohedral metallofullerene (Ti2C2)@C78. Chem Commun 35:4444–4446CrossRef Tan K, Lu X (2005) Ti2C80 is more likely a titanium carbide endohedral metallofullerene (Ti2C2)@C78. Chem Commun 35:4444–4446CrossRef
54.
go back to reference Sato Y, Yumura T, Suenaga K et al (2006) Direct imaging of intracage structure in titanium-carbide endohedral metallofullerene. Phys Rev B 73(19):193401CrossRef Sato Y, Yumura T, Suenaga K et al (2006) Direct imaging of intracage structure in titanium-carbide endohedral metallofullerene. Phys Rev B 73(19):193401CrossRef
55.
go back to reference Li F-F, Chen N, Mulet-Gas M et al (2013) Ti2S@D 3h (24109)-C78: a sulfide cluster metallofullerene containing only transition metals inside the cage. Chem Sci 4(9):3404–3410CrossRef Li F-F, Chen N, Mulet-Gas M et al (2013) Ti2S@D 3h (24109)-C78: a sulfide cluster metallofullerene containing only transition metals inside the cage. Chem Sci 4(9):3404–3410CrossRef
56.
go back to reference Yang S, Chen C, Popov A et al (2009) An endohedral titanium(III) in a clusterfullerene: putting a non-group-III metal nitride into the C80-I h fullerene cage. Chem Commun 6391–6393 Yang S, Chen C, Popov A et al (2009) An endohedral titanium(III) in a clusterfullerene: putting a non-group-III metal nitride into the C80-I h fullerene cage. Chem Commun 6391–6393
57.
go back to reference Chen C, Liu F, Li S et al (2012) Titanium/yttrium mixed metal nitride clusterfullerene TiY2N@C80: synthesis, isolation, and effect of the group-III metal. Inorg Chem 51(5):3039–3045CrossRef Chen C, Liu F, Li S et al (2012) Titanium/yttrium mixed metal nitride clusterfullerene TiY2N@C80: synthesis, isolation, and effect of the group-III metal. Inorg Chem 51(5):3039–3045CrossRef
58.
go back to reference Junghans K, Ghiassi KB, Samoylova NA et al (2016) Synthesis and isolation of the titanium-scandium endohedral fullerenes—Sc2TiC@I h -C80, Sc2TiC@D 5h -C80, and Sc2TiC2@I h -C80: metal size tuning of the TiIV/TiIII redox potentials. Chem-Eur J 22(37):13098–13107CrossRef Junghans K, Ghiassi KB, Samoylova NA et al (2016) Synthesis and isolation of the titanium-scandium endohedral fullerenes—Sc2TiC@I h -C80, Sc2TiC@D 5h -C80, and Sc2TiC2@I h -C80: metal size tuning of the TiIV/TiIII redox potentials. Chem-Eur J 22(37):13098–13107CrossRef
59.
go back to reference Svitova AL, Ghiassi K, Schlesier C et al (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5 3568 Svitova AL, Ghiassi K, Schlesier C et al (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5 3568
60.
go back to reference Sueki K, Kikuchi K, Akiyama K et al (1999) Formation of metallofullerenes with higher group elements. Chem Phys Lett 300(1–2):140–144CrossRef Sueki K, Kikuchi K, Akiyama K et al (1999) Formation of metallofullerenes with higher group elements. Chem Phys Lett 300(1–2):140–144CrossRef
61.
go back to reference Akiyama K, Sueki K, Kodama T et al (2000) New fullerenes of a group IV element: Hf metallofullerenes. Chem Phys Lett 317(3–5):490–496CrossRef Akiyama K, Sueki K, Kodama T et al (2000) New fullerenes of a group IV element: Hf metallofullerenes. Chem Phys Lett 317(3–5):490–496CrossRef
62.
go back to reference Wei T, Wang S, Lu X et al (2016) Entrapping a group-VB transition metal, vanadium, within an endohedral metallofullerene: V x Sc3–x N@I h -C80 (x = 1, 2). J Am Chem Soc 138(1):207–214CrossRef Wei T, Wang S, Lu X et al (2016) Entrapping a group-VB transition metal, vanadium, within an endohedral metallofullerene: V x Sc3–x N@I h -C80 (x = 1, 2). J Am Chem Soc 138(1):207–214CrossRef
63.
go back to reference Roy D, Tripathi NK, Ram K et al (2009) Synthesis of germanium encapsulated fullerene. Solid State Commun 149(31–32):1244–1247CrossRef Roy D, Tripathi NK, Ram K et al (2009) Synthesis of germanium encapsulated fullerene. Solid State Commun 149(31–32):1244–1247CrossRef
64.
go back to reference Akiyama K, Zhao YL, Sueki K et al (2001) Isolation and characterization of light actinide metallofullerenes. J Am Chem Soc 123(1):181–182CrossRef Akiyama K, Zhao YL, Sueki K et al (2001) Isolation and characterization of light actinide metallofullerenes. J Am Chem Soc 123(1):181–182CrossRef
65.
go back to reference Akiyama K, Sueki K, Tsukada K et al (2002) Study of metallofullerenes encapsulating actinides. J Nucl Radiochem Sci 3(1):151–154CrossRef Akiyama K, Sueki K, Tsukada K et al (2002) Study of metallofullerenes encapsulating actinides. J Nucl Radiochem Sci 3(1):151–154CrossRef
66.
go back to reference Akiyama K, Sueki K, Haba H et al (2003) Production and characterization of actinide metallofullerenes. J Radioanal Nucl Chem 255(1):155–158CrossRef Akiyama K, Sueki K, Haba H et al (2003) Production and characterization of actinide metallofullerenes. J Radioanal Nucl Chem 255(1):155–158CrossRef
67.
go back to reference Akiyama K, Haba H, Tsukada K et al (2009) A metallofullerene that encapsulates 225Ac. J Radioanal Nucl Chem 280(2):329–331CrossRef Akiyama K, Haba H, Tsukada K et al (2009) A metallofullerene that encapsulates 225Ac. J Radioanal Nucl Chem 280(2):329–331CrossRef
68.
go back to reference Ross MM, Callahan JH (1991) Formation and characterization of C60He+. J Phys Chem 95(15):5720–5723CrossRef Ross MM, Callahan JH (1991) Formation and characterization of C60He+. J Phys Chem 95(15):5720–5723CrossRef
69.
go back to reference Caldwell KA, Giblin DE, Gross ML (1992) High-energy collisions of fullerene radical cations with target gases—capture of the target gas and charge stripping of C-60(.+), C-70(.+), and C-84(.+). J Am Chem Soc 114(10):3743–3756CrossRef Caldwell KA, Giblin DE, Gross ML (1992) High-energy collisions of fullerene radical cations with target gases—capture of the target gas and charge stripping of C-60(.+), C-70(.+), and C-84(.+). J Am Chem Soc 114(10):3743–3756CrossRef
70.
go back to reference Wan Z, Christian JF, Anderson SL (1992) Ne++C60: Collision energy and impact parameter dependence for endohedral complex formation, fragmentation, and charge transfer. J Chem Phys 96(4):3344–3347CrossRef Wan Z, Christian JF, Anderson SL (1992) Ne++C60: Collision energy and impact parameter dependence for endohedral complex formation, fragmentation, and charge transfer. J Chem Phys 96(4):3344–3347CrossRef
71.
go back to reference Mosely J, Cooper H, Gallagher R et al (1995) Letter: target capture of argon by fullerene radical cations in high-energy collisions. Eur J Mass Spectrom 1(5):501–502CrossRef Mosely J, Cooper H, Gallagher R et al (1995) Letter: target capture of argon by fullerene radical cations in high-energy collisions. Eur J Mass Spectrom 1(5):501–502CrossRef
72.
go back to reference Wan ZM, Christian JF, Anderson SL (1992) Collision of Li+ and Na+ with C60 − insertion, fragmentation, and thermionic emission. Phys Rev Lett 69(9):1352–1355 Wan ZM, Christian JF, Anderson SL (1992) Collision of Li+ and Na+ with C60 insertion, fragmentation, and thermionic emission. Phys Rev Lett 69(9):1352–1355
73.
go back to reference Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1993) Stable compounds of helium and neon—He@C60 and Ne@C60. Science 259(5100):1428–1430CrossRef Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1993) Stable compounds of helium and neon—He@C60 and Ne@C60. Science 259(5100):1428–1430CrossRef
74.
go back to reference Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1994) Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high-pressure. J Am Chem Soc 116(5):2193–2194CrossRef Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1994) Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high-pressure. J Am Chem Soc 116(5):2193–2194CrossRef
75.
go back to reference Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1994) Probing the interior of fullerenes by 3He NMR-spectroscopy of endohedral 3He@C60 and 3He@C70. Nature 367(6460):256–258CrossRef Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1994) Probing the interior of fullerenes by 3He NMR-spectroscopy of endohedral 3He@C60 and 3He@C70. Nature 367(6460):256–258CrossRef
76.
go back to reference Saunders M, Cross RJ, Jiménez-Vázquez HA et al (1996) Noble gas atoms inside fullerenes. Science 271(5256):1693–1697CrossRef Saunders M, Cross RJ, Jiménez-Vázquez HA et al (1996) Noble gas atoms inside fullerenes. Science 271(5256):1693–1697CrossRef
77.
go back to reference Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1995) Analysis of isomers of the higher fullerenes by 3He NMR-spectroscopy. J Am Chem Soc 117(36):9305–9308CrossRef Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1995) Analysis of isomers of the higher fullerenes by 3He NMR-spectroscopy. J Am Chem Soc 117(36):9305–9308CrossRef
78.
go back to reference DiCamillo BA, Hettich RL, Guiochon G et al (1996) Enrichment and characterization of a noble gas fullerene: Ar@C60. J Phys Chem 100(22):9197–9201CrossRef DiCamillo BA, Hettich RL, Guiochon G et al (1996) Enrichment and characterization of a noble gas fullerene: Ar@C60. J Phys Chem 100(22):9197–9201CrossRef
79.
go back to reference Yamamoto K, Saunders M, Khong A et al (1999) Isolation and spectral properties of Kr@C-60, a stable van der Waals molecule. J Am Chem Soc 121(7):1591–1596CrossRef Yamamoto K, Saunders M, Khong A et al (1999) Isolation and spectral properties of Kr@C-60, a stable van der Waals molecule. J Am Chem Soc 121(7):1591–1596CrossRef
80.
go back to reference Lee HM, Olmstead MM, Suetsuna T et al (2002) Crystallographic characterization of Kr@C60 in (0.09Kr@C60/0.91C60)·{NiII(OEP)}·2C6H6. Chem Commun 13:1352–1353CrossRef Lee HM, Olmstead MM, Suetsuna T et al (2002) Crystallographic characterization of Kr@C60 in (0.09Kr@C60/0.91C60)·{NiII(OEP)}·2C6H6. Chem Commun 13:1352–1353CrossRef
81.
go back to reference Syamala MS, Cross RJ, Saunders M (2002) Xe-129 NMR spectrum of xenon inside C-60. J Am Chem Soc 124(21):6216–6219CrossRef Syamala MS, Cross RJ, Saunders M (2002) Xe-129 NMR spectrum of xenon inside C-60. J Am Chem Soc 124(21):6216–6219CrossRef
82.
go back to reference Khong A, Jimenez-Vazquez HA, Saunders M et al (1998) An NMR study of He2 inside C70. J Am Chem Soc 120(25):6380–6383CrossRef Khong A, Jimenez-Vazquez HA, Saunders M et al (1998) An NMR study of He2 inside C70. J Am Chem Soc 120(25):6380–6383CrossRef
83.
go back to reference Sternfeld T, Hoffman RE, Saunders M et al (2002) Two helium atoms inside fullerenes: probing the internal magnetic field in C 60 6- and C 70 6- . J Am Chem Soc 124(30):8786–8787CrossRef Sternfeld T, Hoffman RE, Saunders M et al (2002) Two helium atoms inside fullerenes: probing the internal magnetic field in C 60 6- and C 70 6- . J Am Chem Soc 124(30):8786–8787CrossRef
84.
go back to reference Laskin J, Peres T, Lifshitz C et al (1998) An artificial molecule of Ne2 inside C70. Chem Phys Lett 285(1–2):7–9CrossRef Laskin J, Peres T, Lifshitz C et al (1998) An artificial molecule of Ne2 inside C70. Chem Phys Lett 285(1–2):7–9CrossRef
85.
go back to reference Peres T, Cao B, Cui W et al (2001) Some new diatomic molecule containing endohedral fullerenes. Int J Mass Spectrom 210–211:241–247CrossRef Peres T, Cao B, Cui W et al (2001) Some new diatomic molecule containing endohedral fullerenes. Int J Mass Spectrom 210–211:241–247CrossRef
86.
go back to reference Peng RF, Chu SJ, Huang YM et al (2009) Preparation of He@C60 and He2@C60 by an explosive method. J Mater Chem 19:3602–3605CrossRef Peng RF, Chu SJ, Huang YM et al (2009) Preparation of He@C60 and He2@C60 by an explosive method. J Mater Chem 19:3602–3605CrossRef
87.
go back to reference Suetsuna T, Dragoe N, Harneit W et al (2002) Separation of N2@C60 and N@C60. Chem-Eur J 8(22):5079–5083CrossRef Suetsuna T, Dragoe N, Harneit W et al (2002) Separation of N2@C60 and N@C60. Chem-Eur J 8(22):5079–5083CrossRef
88.
go back to reference Murphy TA, Pawlik T, Weidinger A et al (1996) Observation of atomlike nitrogen in nitrogen-implanted solid C-60. Phys Rev Lett 77(6):1075–1078CrossRef Murphy TA, Pawlik T, Weidinger A et al (1996) Observation of atomlike nitrogen in nitrogen-implanted solid C-60. Phys Rev Lett 77(6):1075–1078CrossRef
89.
go back to reference Weidinger A, Waiblinger M, Pietzak B et al (1998) Atomic nitrogen in C60: N@C60. Appl Phys A-Mater Sci Process 66(3):287–292CrossRef Weidinger A, Waiblinger M, Pietzak B et al (1998) Atomic nitrogen in C60: N@C60. Appl Phys A-Mater Sci Process 66(3):287–292CrossRef
90.
go back to reference Jakes P, Dinse KP, Meyer C et al (2003) Purification and optical spectroscopy of N@C60. Phys Chem Chem Phys 5(19):4080–4083CrossRef Jakes P, Dinse KP, Meyer C et al (2003) Purification and optical spectroscopy of N@C60. Phys Chem Chem Phys 5(19):4080–4083CrossRef
91.
go back to reference Dietel E, Hirsch A, Pietzak B et al (1999) Atomic nitrogen encapsulated in fullerenes: effects of cage variations. J Am Chem Soc 121(11):2432–2437CrossRef Dietel E, Hirsch A, Pietzak B et al (1999) Atomic nitrogen encapsulated in fullerenes: effects of cage variations. J Am Chem Soc 121(11):2432–2437CrossRef
92.
go back to reference Knapp C, Weiden N, Kass K et al (1998) Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene. Mol Phys 95(5):999–1004CrossRef Knapp C, Weiden N, Kass K et al (1998) Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene. Mol Phys 95(5):999–1004CrossRef
93.
go back to reference Ito S, Shimotani H, Takagi H et al (2008) On the synthesis conditions of N and N2 endohedral fullerenes. Fullerenes Nanotubes Carbon Nanostruct 16(3):206–213CrossRef Ito S, Shimotani H, Takagi H et al (2008) On the synthesis conditions of N and N2 endohedral fullerenes. Fullerenes Nanotubes Carbon Nanostruct 16(3):206–213CrossRef
94.
go back to reference Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307(5707):238–240CrossRef Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307(5707):238–240CrossRef
95.
go back to reference Morinaka Y, Tanabe F, Murata M et al (2010) Rational synthesis, enrichment, and 13C NMR spectra of endohedral C60 and C70 encapsulating a helium atom. Chem Commun 46(25):4532–4534CrossRef Morinaka Y, Tanabe F, Murata M et al (2010) Rational synthesis, enrichment, and 13C NMR spectra of endohedral C60 and C70 encapsulating a helium atom. Chem Commun 46(25):4532–4534CrossRef
96.
go back to reference Murata M, Maeda S, Morinaka Y et al (2008) Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. J Am Chem Soc 130(47):15800–15801CrossRef Murata M, Maeda S, Morinaka Y et al (2008) Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. J Am Chem Soc 130(47):15800–15801CrossRef
97.
go back to reference Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333(6042):613–616CrossRef Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333(6042):613–616CrossRef
98.
go back to reference Zhang R, Murata M, Aharen T et al (2016) Synthesis of a distinct water dimer inside fullerene C70. Nat Chem 8(5):435–441CrossRef Zhang R, Murata M, Aharen T et al (2016) Synthesis of a distinct water dimer inside fullerene C70. Nat Chem 8(5):435–441CrossRef
99.
go back to reference Hashikawa Y, Murata M, Wakamiya A et al (2016) Synthesis and properties of endohedral Aza[60]fullerenes: H2O@C59N and H2@C59N as their dimers and monomers. J Am Chem Soc 138(12):4096–4104CrossRef Hashikawa Y, Murata M, Wakamiya A et al (2016) Synthesis and properties of endohedral Aza[60]fullerenes: H2O@C59N and H2@C59N as their dimers and monomers. J Am Chem Soc 138(12):4096–4104CrossRef
100.
go back to reference Vougioukalakis GC, Roubelakis MM, Orfanopoulos M (2010) Open-cage fullerenes: towards the construction of nanosized molecular containers. Chem Soc Rev 39(2):817–844CrossRef Vougioukalakis GC, Roubelakis MM, Orfanopoulos M (2010) Open-cage fullerenes: towards the construction of nanosized molecular containers. Chem Soc Rev 39(2):817–844CrossRef
101.
go back to reference Gan LB, Yang DZ, Zhang QY et al (2010) Preparation of open-cage fullerenes and incorporation of small molecules through their orifices. Adv Mater 22(13):1498–1507CrossRef Gan LB, Yang DZ, Zhang QY et al (2010) Preparation of open-cage fullerenes and incorporation of small molecules through their orifices. Adv Mater 22(13):1498–1507CrossRef
102.
go back to reference Murata M, Murata Y, Komatsu K (2008) Surgery of fullerenes. Chem Commun 46:6083–6094CrossRef Murata M, Murata Y, Komatsu K (2008) Surgery of fullerenes. Chem Commun 46:6083–6094CrossRef
103.
go back to reference Rubin Y, Jarrosson T, Wang GW et al (2001) Insertion of helium and molecular hydrogen through the orifice of an open fullerene. Angew Chem-Int Edit 40(8):1543 Rubin Y, Jarrosson T, Wang GW et al (2001) Insertion of helium and molecular hydrogen through the orifice of an open fullerene. Angew Chem-Int Edit 40(8):1543
104.
go back to reference Iwamatsu S, Uozaki T, Kobayashi K et al (2004) A bowl-shaped fullerene encapsulates a water into the cage. J Am Chem Soc 126(9):2668–2669CrossRef Iwamatsu S, Uozaki T, Kobayashi K et al (2004) A bowl-shaped fullerene encapsulates a water into the cage. J Am Chem Soc 126(9):2668–2669CrossRef
105.
go back to reference Krachmalnicoff A, Bounds R, Mamone S et al (2015) Synthesis and characterisation of an open-cage fullerene encapsulating hydrogen fluoride. Chem Commun 51(24):4993–4996CrossRef Krachmalnicoff A, Bounds R, Mamone S et al (2015) Synthesis and characterisation of an open-cage fullerene encapsulating hydrogen fluoride. Chem Commun 51(24):4993–4996CrossRef
106.
go back to reference Chen C-S, Kuo T-S, Yeh W-Y (2016) Encapsulation of formaldehyde and hydrogen cyanide in an open-cage fullerene. Chem-Eur J 22(26):8773–8776CrossRef Chen C-S, Kuo T-S, Yeh W-Y (2016) Encapsulation of formaldehyde and hydrogen cyanide in an open-cage fullerene. Chem-Eur J 22(26):8773–8776CrossRef
107.
go back to reference Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131(9):3392–3395CrossRef Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131(9):3392–3395CrossRef
108.
go back to reference Iwamatsu S, Stanisky CM, Cross RJ et al (2006) Carbon monoxide inside an open-cage fullerene. Angew Chem-Int Edit 45(32):5337–5340CrossRef Iwamatsu S, Stanisky CM, Cross RJ et al (2006) Carbon monoxide inside an open-cage fullerene. Angew Chem-Int Edit 45(32):5337–5340CrossRef
109.
go back to reference Futagoishi T, Murata M, Wakamiya A et al (2015) Trapping N2 and CO2 on the sub-nano scale in the confined internal spaces of open-cage C60 derivatives: isolation and structural characterization of the host-guest complexes. Angew Chem-Int Edit Engl 54(49):14791–14794CrossRef Futagoishi T, Murata M, Wakamiya A et al (2015) Trapping N2 and CO2 on the sub-nano scale in the confined internal spaces of open-cage C60 derivatives: isolation and structural characterization of the host-guest complexes. Angew Chem-Int Edit Engl 54(49):14791–14794CrossRef
110.
go back to reference Whitener KE, Frunzi M, S-i Iwamatsu et al (2008) Putting ammonia into a chemically opened fullerene. J Am Chem Soc 130(42):13996–13999CrossRef Whitener KE, Frunzi M, S-i Iwamatsu et al (2008) Putting ammonia into a chemically opened fullerene. J Am Chem Soc 130(42):13996–13999CrossRef
111.
go back to reference Whitener KE, Cross RJ, Saunders M et al (2009) Methane in an open-cage [60] fullerene. J Am Chem Soc 131(18):6338–6339CrossRef Whitener KE, Cross RJ, Saunders M et al (2009) Methane in an open-cage [60] fullerene. J Am Chem Soc 131(18):6338–6339CrossRef
112.
go back to reference Morinaka Y, Sato S, Wakamiya A et al (2013) X-ray observation of a helium atom and placing a nitrogen atom inside He@C60 and He@C70. Nat Commun 4:1554CrossRef Morinaka Y, Sato S, Wakamiya A et al (2013) X-ray observation of a helium atom and placing a nitrogen atom inside He@C60 and He@C70. Nat Commun 4:1554CrossRef
113.
go back to reference Olmstead MM, Costa DA, Maitra K et al (1999) Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J Am Chem Soc 121(30):7090–7097CrossRef Olmstead MM, Costa DA, Maitra K et al (1999) Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J Am Chem Soc 121(30):7090–7097CrossRef
114.
go back to reference Rodriguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563CrossRef Rodriguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563CrossRef
115.
go back to reference Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43(1):92–102CrossRef Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43(1):92–102CrossRef
116.
go back to reference Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47(21):5942–5957CrossRef Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47(21):5942–5957CrossRef
117.
go back to reference Stevenson S, Thompson HR, Arvola KD et al (2015) Isolation of CeLu2N@I h -C80 through a non-chromatographic, two-step chemical process and crystallographic characterization of the pyramidalized CeLu2N within the icosahedral cage. Chem-Eur J 21(29):10362–10368CrossRef Stevenson S, Thompson HR, Arvola KD et al (2015) Isolation of CeLu2N@I h -C80 through a non-chromatographic, two-step chemical process and crystallographic characterization of the pyramidalized CeLu2N within the icosahedral cage. Chem-Eur J 21(29):10362–10368CrossRef
118.
go back to reference Yang H, Jin H, Zhen H et al (2011) Isolation and crystallographic identification of four isomers of Sm@C90. J Am Chem Soc 133(16):6299–6306CrossRef Yang H, Jin H, Zhen H et al (2011) Isolation and crystallographic identification of four isomers of Sm@C90. J Am Chem Soc 133(16):6299–6306CrossRef
119.
go back to reference Iiduka Y, Wakahara T, Nakajima K et al (2006) 13C NMR spectroscopic study of scandium dimetallofullerene, Sc2@C84 vs. Sc2C2@C82. Chem Commun 19:2057–2059CrossRef Iiduka Y, Wakahara T, Nakajima K et al (2006) 13C NMR spectroscopic study of scandium dimetallofullerene, Sc2@C84 vs. Sc2C2@C82. Chem Commun 19:2057–2059CrossRef
120.
go back to reference Yamazaki Y, Nakajima K, Wakahara T et al (2008) Observation of 13C NMR chemical shifts of metal carbides encapsulated in fullerenes: Sc2C2@C82, Sc2C2@C82, and Sc3C2@C80. Angew Chem-Int Edit Engl 47:7905–7908CrossRef Yamazaki Y, Nakajima K, Wakahara T et al (2008) Observation of 13C NMR chemical shifts of metal carbides encapsulated in fullerenes: Sc2C2@C82, Sc2C2@C82, and Sc3C2@C80. Angew Chem-Int Edit Engl 47:7905–7908CrossRef
121.
go back to reference Akasaka T, Wakahara T, Nagase S et al (2001) Structural determination of the La@C82 isomer. J Phys Chem B 105(15):2971–2974CrossRef Akasaka T, Wakahara T, Nagase S et al (2001) Structural determination of the La@C82 isomer. J Phys Chem B 105(15):2971–2974CrossRef
122.
go back to reference Tsuchiya T, Wakahara T, Maeda Y et al (2005) 2D NMR characterization of the La@C82 anion. Angew Chem-Int Edit 44(21):3282–3285CrossRef Tsuchiya T, Wakahara T, Maeda Y et al (2005) 2D NMR characterization of the La@C82 anion. Angew Chem-Int Edit 44(21):3282–3285CrossRef
123.
go back to reference Yamada M, Wakahara T, Tsuchiya T et al (2008) Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. Chem Commun 558–560 Yamada M, Wakahara T, Tsuchiya T et al (2008) Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. Chem Commun 558–560
124.
go back to reference Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce2@C72. J Phys Chem A 112:7627–7631CrossRef Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce2@C72. J Phys Chem A 112:7627–7631CrossRef
125.
go back to reference Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem-Eur J 15:9486–9493CrossRef Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem-Eur J 15:9486–9493CrossRef
126.
go back to reference Fu W, Xu L, Azurmendi H et al (2009) 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40-43). J Am Chem Soc 131(33):11762–11769CrossRef Fu W, Xu L, Azurmendi H et al (2009) 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40-43). J Am Chem Soc 131(33):11762–11769CrossRef
127.
go back to reference Fu W, Wang X, Azuremendi H et al (2011) 14N and 45Sc NMR study of trimetallic nitride cluster (M3N)6+ dynamics inside a icosahedral C80 cage. Chem Commun 47(13):3858–3860CrossRef Fu W, Wang X, Azuremendi H et al (2011) 14N and 45Sc NMR study of trimetallic nitride cluster (M3N)6+ dynamics inside a icosahedral C80 cage. Chem Commun 47(13):3858–3860CrossRef
128.
go back to reference Popov AA, Schiemenz S, Avdoshenko SM et al (2011) The state of asymmetric nitride clusters in endohedral fullerenes as studied by 14N NMR spectroscopy: experiment and theory. J Phys Chem C 115(31):15257–15265CrossRef Popov AA, Schiemenz S, Avdoshenko SM et al (2011) The state of asymmetric nitride clusters in endohedral fullerenes as studied by 14N NMR spectroscopy: experiment and theory. J Phys Chem C 115(31):15257–15265CrossRef
129.
go back to reference Akasaka T, Nagase S, Kobayashi K et al (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem-Int Edit Engl 36(15):1643–1645CrossRef Akasaka T, Nagase S, Kobayashi K et al (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem-Int Edit Engl 36(15):1643–1645CrossRef
130.
go back to reference Suzuki M, Mizorogi N, Yang T et al (2013) La2@C s (17 490)-C76: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal-pentalene interactions. Chem-Eur J 19(50):17125–17130CrossRef Suzuki M, Mizorogi N, Yang T et al (2013) La2@C s (17 490)-C76: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal-pentalene interactions. Chem-Eur J 19(50):17125–17130CrossRef
131.
go back to reference Kurihara H, Lu X, Iiduka Y et al (2011) Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C 2v (5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J Am Chem Soc 133(8):2382–2385CrossRef Kurihara H, Lu X, Iiduka Y et al (2011) Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C 2v (5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J Am Chem Soc 133(8):2382–2385CrossRef
132.
go back to reference Feng Y, Wang T, Xiang J et al (2015) Tuneable dynamics of a scandium nitride cluster inside an I h -C80 cage. Dalton Trans 44:2057–2061CrossRef Feng Y, Wang T, Xiang J et al (2015) Tuneable dynamics of a scandium nitride cluster inside an I h -C80 cage. Dalton Trans 44:2057–2061CrossRef
133.
go back to reference Popov AA, Chen N, Pinzón JR et al (2012) Redox-active scandium oxide cluster inside a fullerene cage: spectroscopic, voltammetric, electron spin resonance spectroelectrochemical, and extended density functional theory study of Sc4O2@C80 and its ion radicals. J Am Chem Soc 134(48):19607–19618CrossRef Popov AA, Chen N, Pinzón JR et al (2012) Redox-active scandium oxide cluster inside a fullerene cage: spectroscopic, voltammetric, electron spin resonance spectroelectrochemical, and extended density functional theory study of Sc4O2@C80 and its ion radicals. J Am Chem Soc 134(48):19607–19618CrossRef
134.
go back to reference Wang T-S, Feng L, Wu J-Y et al (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-I h . J Am Chem Soc 132(46):16362–16364CrossRef Wang T-S, Feng L, Wu J-Y et al (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-I h . J Am Chem Soc 132(46):16362–16364CrossRef
135.
go back to reference Wang GW, Saunders M, Khong A et al (2000) A new method for separating the isomeric C84 fullerenes. J Am Chem Soc 122(13):3216–3217CrossRef Wang GW, Saunders M, Khong A et al (2000) A new method for separating the isomeric C84 fullerenes. J Am Chem Soc 122(13):3216–3217CrossRef
136.
go back to reference Popov AA (2009) Metal-cage bonding, molecular structures and vibrational spectra of endohedral fullerenes: bridging experiment and theory. J Comput Theor Nanosci 6(2):292–317CrossRef Popov AA (2009) Metal-cage bonding, molecular structures and vibrational spectra of endohedral fullerenes: bridging experiment and theory. J Comput Theor Nanosci 6(2):292–317CrossRef
137.
go back to reference Popov AA, Krause M, Yang SF et al (2007) C78 cage isomerism defined by trimetallic nitride cluster size: a computational and vibrational spectroscopic study. J Phys Chem B 111(13):3363–3369CrossRef Popov AA, Krause M, Yang SF et al (2007) C78 cage isomerism defined by trimetallic nitride cluster size: a computational and vibrational spectroscopic study. J Phys Chem B 111(13):3363–3369CrossRef
138.
go back to reference Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR cage of Sc3N@C70. Angew Chem-Int Edit 46(8):1256–1259CrossRef Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR cage of Sc3N@C70. Angew Chem-Int Edit 46(8):1256–1259CrossRef
139.
go back to reference Fowler P, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon Press, Oxford Fowler P, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon Press, Oxford
140.
go back to reference Takata M, Nishibori E, Sakata M et al (2003) Synchrotron radiation for structural chemistry—endohedral natures of metallofullerenes found by synchrotron radiation powder method. Struct Chem 14(1):23–38CrossRef Takata M, Nishibori E, Sakata M et al (2003) Synchrotron radiation for structural chemistry—endohedral natures of metallofullerenes found by synchrotron radiation powder method. Struct Chem 14(1):23–38CrossRef
141.
go back to reference Akasaka T, Wakahara T, Nagase S et al (2000) La@C82 anion. An unusually stable metallofullerene. J Am Chem Soc 122(38):9316–9317CrossRef Akasaka T, Wakahara T, Nagase S et al (2000) La@C82 anion. An unusually stable metallofullerene. J Am Chem Soc 122(38):9316–9317CrossRef
142.
go back to reference Takata M, Umeda B, Nishibori E et al (1995) Confirmation by X-ray-diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377(6544):46–49CrossRef Takata M, Umeda B, Nishibori E et al (1995) Confirmation by X-ray-diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377(6544):46–49CrossRef
143.
go back to reference Sato S, Nikawa H, Seki S et al (2012) A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew Chem-Int Edit Engl 51(7):1589–1591CrossRef Sato S, Nikawa H, Seki S et al (2012) A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew Chem-Int Edit Engl 51(7):1589–1591CrossRef
144.
go back to reference Suzuki M, Lu X, Sato S et al (2012) Where does the metal cation stay in Gd@C 2v (9)-C82? A single-crystal X-ray diffraction study. Inorg Chem 51(9):5270–5273CrossRef Suzuki M, Lu X, Sato S et al (2012) Where does the metal cation stay in Gd@C 2v (9)-C82? A single-crystal X-ray diffraction study. Inorg Chem 51(9):5270–5273CrossRef
145.
go back to reference Akasaka T, Lu X (2012) Structural and electronic properties of endohedral metallofullerenes. Chem Rec 12(2):256–269CrossRef Akasaka T, Lu X (2012) Structural and electronic properties of endohedral metallofullerenes. Chem Rec 12(2):256–269CrossRef
146.
go back to reference Kodama T, Ozawa N, Miyake Y et al (2002) Structural study of three isomers of Tm@C82 by 13C NMR spectroscopy. J Am Chem Soc 124(7):1452–1455CrossRef Kodama T, Ozawa N, Miyake Y et al (2002) Structural study of three isomers of Tm@C82 by 13C NMR spectroscopy. J Am Chem Soc 124(7):1452–1455CrossRef
147.
go back to reference Kodama T, Fujii R, Miyake Y et al (2003) Structural study of four Ca@C82 isomers by 13C NMR spectroscopy. Chem Phys Lett 377(1–2):197–200CrossRef Kodama T, Fujii R, Miyake Y et al (2003) Structural study of four Ca@C82 isomers by 13C NMR spectroscopy. Chem Phys Lett 377(1–2):197–200CrossRef
148.
go back to reference Reich A, Panthofer M, Modrow H et al (2004) The structure of Ba@C74. J Am Chem Soc 126(44):14428–14434CrossRef Reich A, Panthofer M, Modrow H et al (2004) The structure of Ba@C74. J Am Chem Soc 126(44):14428–14434CrossRef
149.
go back to reference Xu W, Hao Y, Uhlik F et al (2013) Structural and electrochemical studies of Sm@D 3h -C74 reveal a weak metal-cage interaction and a small band gap species. Nanoscale 5(21):10409–10413CrossRef Xu W, Hao Y, Uhlik F et al (2013) Structural and electrochemical studies of Sm@D 3h -C74 reveal a weak metal-cage interaction and a small band gap species. Nanoscale 5(21):10409–10413CrossRef
150.
go back to reference Kodama T, Fujii R, Miyake Y et al (2004) 13C NMR study of Ca@C74: the cage structure and the site-hopping motion of a Ca atom inside the cage. Chem Phys Lett 399(1–3):94–97CrossRef Kodama T, Fujii R, Miyake Y et al (2004) 13C NMR study of Ca@C74: the cage structure and the site-hopping motion of a Ca atom inside the cage. Chem Phys Lett 399(1–3):94–97CrossRef
151.
go back to reference Xu JX, Tsuchiya T, Hao C et al (2006) Structure determination of a missing-caged metallofullerene: Yb@C74 (II) and the dynamic motion of the encaged ytterbium ion. Chem Phys Lett 419(1–3):44–47CrossRef Xu JX, Tsuchiya T, Hao C et al (2006) Structure determination of a missing-caged metallofullerene: Yb@C74 (II) and the dynamic motion of the encaged ytterbium ion. Chem Phys Lett 419(1–3):44–47CrossRef
152.
go back to reference Lu X, Slanina Z, Akasaka T et al (2010) Yb@C2n (n = 40, 41, 42): new fullerene allotropes with unexplored electrochemical properties. J Am Chem Soc 132(16):5896–5905CrossRef Lu X, Slanina Z, Akasaka T et al (2010) Yb@C2n (n = 40, 41, 42): new fullerene allotropes with unexplored electrochemical properties. J Am Chem Soc 132(16):5896–5905CrossRef
153.
go back to reference Yang H, Wang Z, Jin H et al (2013) Isolation and crystallographic characterization of Sm@C 2v (3)-C80 through cocrystal formation with NiII(octaethylporphyrin) or bis(ethylenedithio)tetrathiafulvalene. Inorg Chem 52(3):1275–1284CrossRef Yang H, Wang Z, Jin H et al (2013) Isolation and crystallographic characterization of Sm@C 2v (3)-C80 through cocrystal formation with NiII(octaethylporphyrin) or bis(ethylenedithio)tetrathiafulvalene. Inorg Chem 52(3):1275–1284CrossRef
154.
go back to reference Yang H, Yu M, Jin H et al (2012) The isolation of three isomers of Sm@C84 and the X-ray crystallographic characterization of Sm@D 3d (19)-C84 and Sm@C 2(13)-C84. J Am Chem Soc 134(11):5331–5338CrossRef Yang H, Yu M, Jin H et al (2012) The isolation of three isomers of Sm@C84 and the X-ray crystallographic characterization of Sm@D 3d (19)-C84 and Sm@C 2(13)-C84. J Am Chem Soc 134(11):5331–5338CrossRef
155.
go back to reference Jin H, Yang H, Yu M et al (2012) Single samarium atoms in large fullerene cages. characterization of two isomers of Sm@C92 and four isomers of Sm@C94 with the X-ray crystallographic identification of Sm@C 1(42)-C92, Sm@C s(24)-C92, and Sm@C3v(134)-C94. J Am Chem Soc 134(26):10933–10941CrossRef Jin H, Yang H, Yu M et al (2012) Single samarium atoms in large fullerene cages. characterization of two isomers of Sm@C92 and four isomers of Sm@C94 with the X-ray crystallographic identification of Sm@C 1(42)-C92, Sm@C s(24)-C92, and Sm@C3v(134)-C94. J Am Chem Soc 134(26):10933–10941CrossRef
156.
go back to reference Xu W, Niu B, Feng L et al (2012) Access to an unexplored chiral C82 Cage by encaging a divalent metal: structural elucidation and electrochemical studies of Sm@C 2(5)-C82. Chem-Eur J 18(45):14246–14249CrossRef Xu W, Niu B, Feng L et al (2012) Access to an unexplored chiral C82 Cage by encaging a divalent metal: structural elucidation and electrochemical studies of Sm@C 2(5)-C82. Chem-Eur J 18(45):14246–14249CrossRef
157.
go back to reference Yang H, Jin H, Wang X et al (2012) X-ray crystallographic characterization of new soluble endohedral fullerenes utilizing the popular C82 bucky cage. isolation and structural characterization of Sm@C 3v (7)-C82, Sm@C s (6)-C82, and Sm@C 2(5)-C82. J Am Chem Soc 134(34):14127–14136CrossRef Yang H, Jin H, Wang X et al (2012) X-ray crystallographic characterization of new soluble endohedral fullerenes utilizing the popular C82 bucky cage. isolation and structural characterization of Sm@C 3v (7)-C82, Sm@C s (6)-C82, and Sm@C 2(5)-C82. J Am Chem Soc 134(34):14127–14136CrossRef
158.
go back to reference Xu W, Niu B, Shi Z et al (2012) Sm@C 2v (3)-C80: site-hopping motion of endohedral Sm atom and metal-induced effect on redox profile. Nanoscale 4:6876–6879CrossRef Xu W, Niu B, Shi Z et al (2012) Sm@C 2v (3)-C80: site-hopping motion of endohedral Sm atom and metal-induced effect on redox profile. Nanoscale 4:6876–6879CrossRef
159.
go back to reference Che Y, Yang H, Wang Z et al (2009) Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: Tm@C 3v -C94 and Ca@C 3v -C94. Inorg Chem 48(13):6004–6010CrossRef Che Y, Yang H, Wang Z et al (2009) Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: Tm@C 3v -C94 and Ca@C 3v -C94. Inorg Chem 48(13):6004–6010CrossRef
160.
go back to reference Shinohara H, Sato H, Saito Y et al (1992) Mass spectroscopic and ESR characterization of soluble yttrium-containing metallofullerenes YC82 and Y2C82. J Phys Chem 96(9):3571–3573CrossRef Shinohara H, Sato H, Saito Y et al (1992) Mass spectroscopic and ESR characterization of soluble yttrium-containing metallofullerenes YC82 and Y2C82. J Phys Chem 96(9):3571–3573CrossRef
161.
go back to reference Nishibori E, Takata M, Sakata M et al (2001) Pentagonal-dodecahedral La2 charge density in [80-I h ]fullerene: La2@C80. Angew Chem-Int Edit 40(16):2998–2999CrossRef Nishibori E, Takata M, Sakata M et al (2001) Pentagonal-dodecahedral La2 charge density in [80-I h ]fullerene: La2@C80. Angew Chem-Int Edit 40(16):2998–2999CrossRef
162.
go back to reference Kato H, Taninaka A, Sugai T et al (2003) Structure of a missing-caged metallofullerene: La2@C72. J Am Chem Soc 125(26):7782–7783CrossRef Kato H, Taninaka A, Sugai T et al (2003) Structure of a missing-caged metallofullerene: La2@C72. J Am Chem Soc 125(26):7782–7783CrossRef
163.
go back to reference Cao BP, Wakahara T, Tsuchiya T et al (2004) Isolation, characterization, and theoretical study of La2@C78. J Am Chem Soc 126(30):9164–9165CrossRef Cao BP, Wakahara T, Tsuchiya T et al (2004) Isolation, characterization, and theoretical study of La2@C78. J Am Chem Soc 126(30):9164–9165CrossRef
164.
go back to reference Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127(42):14570–14571CrossRef Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127(42):14570–14571CrossRef
165.
go back to reference Beavers CM, Jin H, Yang H et al (2011) very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@D 5(450)-C100. J Am Chem Soc 133(39):15338–15341CrossRef Beavers CM, Jin H, Yang H et al (2011) very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@D 5(450)-C100. J Am Chem Soc 133(39):15338–15341CrossRef
166.
go back to reference Popov AA, Avdoshenko SM, Pendás AM et al (2012) Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun 48:8031–8050CrossRef Popov AA, Avdoshenko SM, Pendás AM et al (2012) Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun 48:8031–8050CrossRef
167.
go back to reference Kurihara H, Lu X, Iiduka Y et al (2012) Sc2@C 3v (8)-C82 vs. Sc2C2@C 3v (8)-C82: drastic effect of C2 capture on the redox properties of scandium metallofullerenes. Chem Commun 48:1290–1292CrossRef Kurihara H, Lu X, Iiduka Y et al (2012) Sc2@C 3v (8)-C82 vs. Sc2C2@C 3v (8)-C82: drastic effect of C2 capture on the redox properties of scandium metallofullerenes. Chem Commun 48:1290–1292CrossRef
168.
go back to reference Inoue T, Tomiyama T, Sugai T et al (2004) Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (isomers I, II, and III). J Phys Chem B 108(23):7573–7579CrossRef Inoue T, Tomiyama T, Sugai T et al (2004) Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (isomers I, II, and III). J Phys Chem B 108(23):7573–7579CrossRef
169.
go back to reference Olmstead MM, de Bettencourt-Dias A, Stevenson S et al (2002) Crystallographic characterization of the structure of the endohedral fullerene Er2@C82 Isomer I with C s cage symmetry and multiple sites for erbium along a band of ten contiguous hexagons. J Am Chem Soc 124(16):4172–4173 Olmstead MM, de Bettencourt-Dias A, Stevenson S et al (2002) Crystallographic characterization of the structure of the endohedral fullerene Er2@C82 Isomer I with C s cage symmetry and multiple sites for erbium along a band of ten contiguous hexagons. J Am Chem Soc 124(16):4172–4173
170.
go back to reference Olmstead MM, Lee HM, Stevenson S et al (2002) Crystallographic characterization of Isomer 2 of Er2@C82 and comparison with Isomer 1 of Er2@C82. Chem Commun 22:2688–2689CrossRef Olmstead MM, Lee HM, Stevenson S et al (2002) Crystallographic characterization of Isomer 2 of Er2@C82 and comparison with Isomer 1 of Er2@C82. Chem Commun 22:2688–2689CrossRef
171.
go back to reference Ito Y, Okazaki T, Okubo S et al (2007) Enhanced 1520 nm photoluminescence from Er3+ ions in di-erbium-carbide metallofullerenes (Er2C2)@C82 (isomers I, II, and III). ACS Nano 1(5):456–462CrossRef Ito Y, Okazaki T, Okubo S et al (2007) Enhanced 1520 nm photoluminescence from Er3+ ions in di-erbium-carbide metallofullerenes (Er2C2)@C82 (isomers I, II, and III). ACS Nano 1(5):456–462CrossRef
172.
go back to reference Plant SR, Dantelle G, Ito Y et al (2009) Acuminated fluorescence of Er3+ centres in endohedral fullerenes through the incarceration of a carbide cluster. Chem Phys Lett 476:41–45CrossRef Plant SR, Dantelle G, Ito Y et al (2009) Acuminated fluorescence of Er3+ centres in endohedral fullerenes through the incarceration of a carbide cluster. Chem Phys Lett 476:41–45CrossRef
173.
go back to reference Umemoto H, Ohashi K, Inoue T et al (2010) Synthesis and UHV-STM observation of the Td-symmetric Lu metallofullerene: Lu2@C76(T d ). Chem Commun 46(31):5653–5655CrossRef Umemoto H, Ohashi K, Inoue T et al (2010) Synthesis and UHV-STM observation of the Td-symmetric Lu metallofullerene: Lu2@C76(T d ). Chem Commun 46(31):5653–5655CrossRef
174.
go back to reference Yamada M, Kurihara H, Suzuki M et al (2014) Sc2@C66 Revisited: an endohedral fullerene with scandium ions nestled within two unsaturated linear triquinanes. J Am Chem Soc 136(21):7611–7614CrossRef Yamada M, Kurihara H, Suzuki M et al (2014) Sc2@C66 Revisited: an endohedral fullerene with scandium ions nestled within two unsaturated linear triquinanes. J Am Chem Soc 136(21):7611–7614CrossRef
175.
go back to reference Kikuchi K, Akiyama K, Sakaguchi K et al (2000) Production and isolation of the isomers of dimetallofulerenes, HoTm@C82 and Tm2@C82. Chem Phys Lett 319(5–6):472–476CrossRef Kikuchi K, Akiyama K, Sakaguchi K et al (2000) Production and isolation of the isomers of dimetallofulerenes, HoTm@C82 and Tm2@C82. Chem Phys Lett 319(5–6):472–476CrossRef
176.
go back to reference Zuo T, Xu L, Beavers CM et al (2008) M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M…M bonding interactions inside Aza [80] fullerene cages. J Am Chem Soc 130(39):12992–12997CrossRef Zuo T, Xu L, Beavers CM et al (2008) M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M…M bonding interactions inside Aza [80] fullerene cages. J Am Chem Soc 130(39):12992–12997CrossRef
177.
go back to reference Fu W, Zhang J, Fuhrer T et al (2011) Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc 133:9741–9750CrossRef Fu W, Zhang J, Fuhrer T et al (2011) Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc 133:9741–9750CrossRef
178.
go back to reference Lu X, Akasaka T, Nagase S (2013) Carbide cluster metallofullerenes: structure, properties, and possible origin. Acc Chem Res 46(7):1627–1635CrossRef Lu X, Akasaka T, Nagase S (2013) Carbide cluster metallofullerenes: structure, properties, and possible origin. Acc Chem Res 46(7):1627–1635CrossRef
179.
go back to reference Jin P, Tang C, Chen Z (2014) Carbon atoms trapped in cages: metal carbide clusterfullerenes. Coord Chem Rev 270–271:89–111CrossRef Jin P, Tang C, Chen Z (2014) Carbon atoms trapped in cages: metal carbide clusterfullerenes. Coord Chem Rev 270–271:89–111CrossRef
180.
go back to reference Kurihara H, Lu X, Iiduka Y et al (2012) X-ray structures of Sc2C2@C2n (n = 40-42): in-depth understanding of the core-shell interplay in carbide cluster metallofullerenes. Inorg Chem 51(1):746–750CrossRef Kurihara H, Lu X, Iiduka Y et al (2012) X-ray structures of Sc2C2@C2n (n = 40-42): in-depth understanding of the core-shell interplay in carbide cluster metallofullerenes. Inorg Chem 51(1):746–750CrossRef
181.
go back to reference Zhang J, Fuhrer T, Fu W et al (2012) Nanoscale fullerene compression of a yttrium carbide cluster. J Am Chem Soc 134(20):8487–8493CrossRef Zhang J, Fuhrer T, Fu W et al (2012) Nanoscale fullerene compression of a yttrium carbide cluster. J Am Chem Soc 134(20):8487–8493CrossRef
182.
go back to reference Deng Q, Popov AA (2014) Clusters encapsulated in endohedral metallofullerenes: how strained are they? J Am Chem Soc 136(11):4257–4264CrossRef Deng Q, Popov AA (2014) Clusters encapsulated in endohedral metallofullerenes: how strained are they? J Am Chem Soc 136(11):4257–4264CrossRef
183.
go back to reference Feng Y, Wang T, Wu J et al (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@C s -C72. Nanoscale 5(15):6704–6707CrossRef Feng Y, Wang T, Wu J et al (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@C s -C72. Nanoscale 5(15):6704–6707CrossRef
184.
go back to reference Yang H, Lu C, Liu Z et al (2008) Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J Am Chem Soc 130(51):17296–17300CrossRef Yang H, Lu C, Liu Z et al (2008) Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J Am Chem Soc 130(51):17296–17300CrossRef
185.
go back to reference Cai W, Li F-F, Bao L et al (2016) Isolation and crystallographic characterization of La2C2@C s (574)-C102 and La2C2@C 2(816)-C104: evidences for the top-down formation mechanism of fullerenes. J Am Chem Soc 138(20):6670–6675CrossRef Cai W, Li F-F, Bao L et al (2016) Isolation and crystallographic characterization of La2C2@C s (574)-C102 and La2C2@C 2(816)-C104: evidences for the top-down formation mechanism of fullerenes. J Am Chem Soc 138(20):6670–6675CrossRef
186.
go back to reference Iiduka Y, Wakahara T, Nakahodo T et al (2005) Structural determination of metallofuIlerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127(36):12500–12501CrossRef Iiduka Y, Wakahara T, Nakahodo T et al (2005) Structural determination of metallofuIlerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127(36):12500–12501CrossRef
187.
go back to reference Xu W, Wang T-S, Wu J-Y et al (2011) Entrapped planar trimetallic carbide in a fullerene cage: synthesis, isolation, and spectroscopic studies of Lu3C2@C88. J Phys Chem C 115(2):402–405CrossRef Xu W, Wang T-S, Wu J-Y et al (2011) Entrapped planar trimetallic carbide in a fullerene cage: synthesis, isolation, and spectroscopic studies of Lu3C2@C88. J Phys Chem C 115(2):402–405CrossRef
188.
go back to reference Wang T-S, Chen N, Xiang J-F et al (2009) Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80. J Am Chem Soc 131(46):16646–16647CrossRef Wang T-S, Chen N, Xiang J-F et al (2009) Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80. J Am Chem Soc 131(46):16646–16647CrossRef
189.
go back to reference Tan K, Lu X, Wang CR (2006) Unprecedented μ4-C2 6− anion in Sc4C2@C80. J Phys Chem B 110(23):11098–11102CrossRef Tan K, Lu X, Wang CR (2006) Unprecedented μ4-C2 6− anion in Sc4C2@C80. J Phys Chem B 110(23):11098–11102CrossRef
190.
go back to reference Krause M, Ziegs F, Popov AA et al (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8(4):537–540CrossRef Krause M, Ziegs F, Popov AA et al (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8(4):537–540CrossRef
191.
go back to reference Deng Q, Junghans K, Popov AA (2015) Carbide clusterfullerenes with odd number of carbon atoms: molecular and electronic structures of Sc4C@C80, Sc4C@C82, and Sc4C3@C80. Theor Chem Acc 134(2):10CrossRef Deng Q, Junghans K, Popov AA (2015) Carbide clusterfullerenes with odd number of carbon atoms: molecular and electronic structures of Sc4C@C80, Sc4C@C82, and Sc4C3@C80. Theor Chem Acc 134(2):10CrossRef
192.
go back to reference Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3(8):1298–1320CrossRef Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3(8):1298–1320CrossRef
193.
go back to reference Zhang J, Stevenson S, Dorn HC (2013) Trimetallic nitride template endohedral metallofullerenes: discovery, structural characterization, reactivity, and applications. Acc Chem Res 46(7):1548–1557CrossRef Zhang J, Stevenson S, Dorn HC (2013) Trimetallic nitride template endohedral metallofullerenes: discovery, structural characterization, reactivity, and applications. Acc Chem Res 46(7):1548–1557CrossRef
194.
go back to reference Duchamp JC, Demortier A, Fletcher KR et al (2003) An isomer of the endohedral metallofullerene Sc3N@C80 with D 5h symmetry. Chem Phys Lett 375(5–6):655–659CrossRef Duchamp JC, Demortier A, Fletcher KR et al (2003) An isomer of the endohedral metallofullerene Sc3N@C80 with D 5h symmetry. Chem Phys Lett 375(5–6):655–659CrossRef
195.
go back to reference Cai T, Xu LS, Anderson MR et al (2006) Structure and enhanced reactivity rates of the D 5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589CrossRef Cai T, Xu LS, Anderson MR et al (2006) Structure and enhanced reactivity rates of the D 5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589CrossRef
196.
go back to reference Stevenson S, Fowler PW, Heine T et al (2000) Materials science—a stable non-classical metallofullerene family. Nature 408(6811):427–428CrossRef Stevenson S, Fowler PW, Heine T et al (2000) Materials science—a stable non-classical metallofullerene family. Nature 408(6811):427–428CrossRef
197.
go back to reference Olmstead MM, Lee HM, Duchamp JC et al (2003) Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew Chem-Int Edit 42(8):900–903CrossRef Olmstead MM, Lee HM, Duchamp JC et al (2003) Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew Chem-Int Edit 42(8):900–903CrossRef
198.
go back to reference Olmstead MM, de Bettencourt-Dias A, Duchamp JC et al (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem-Int Edit 40(7):1223–1225CrossRef Olmstead MM, de Bettencourt-Dias A, Duchamp JC et al (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem-Int Edit 40(7):1223–1225CrossRef
199.
go back to reference Wei T, Wang S, Liu F et al (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137(8):3119–3123CrossRef Wei T, Wang S, Liu F et al (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137(8):3119–3123CrossRef
200.
go back to reference Krause M, Dunsch L (2005) Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength. Angew Chem-Int Edit 44(10):1557–1560CrossRef Krause M, Dunsch L (2005) Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength. Angew Chem-Int Edit 44(10):1557–1560CrossRef
201.
go back to reference Yang SF, Dunsch L (2005) A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 ≤ n ≤ 44). J Phys Chem B 109(25):12320–12328CrossRef Yang SF, Dunsch L (2005) A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 ≤ n ≤ 44). J Phys Chem B 109(25):12320–12328CrossRef
202.
go back to reference Krause M, Wong J, Dunsch L (2005) Expanding the world of endohedral fullerenes—the Tm3N@C2n (39 ≤ n ≤ 43) clusterfullerene family. Chem-Eur J 11(2):706–711CrossRef Krause M, Wong J, Dunsch L (2005) Expanding the world of endohedral fullerenes—the Tm3N@C2n (39 ≤ n ≤ 43) clusterfullerene family. Chem-Eur J 11(2):706–711CrossRef
203.
go back to reference Beavers CM, Zuo TM, Duchamp JC et al (2006) Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128(35):11352–11353CrossRef Beavers CM, Zuo TM, Duchamp JC et al (2006) Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128(35):11352–11353CrossRef
204.
go back to reference Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829CrossRef Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829CrossRef
205.
go back to reference Zuo TM, Beavers CM, Duchamp JC et al (2007) Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb3N@C88 and Tb3N@C86 as well as the I h and D 5h isomers of Tb3N@C80. J Am Chem Soc 129(7):2035–2043CrossRef Zuo TM, Beavers CM, Duchamp JC et al (2007) Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb3N@C88 and Tb3N@C86 as well as the I h and D 5h isomers of Tb3N@C80. J Am Chem Soc 129(7):2035–2043CrossRef
206.
go back to reference Fu W, Zhang J, Champion H et al (2011) Electronic properties and 13C NMR structural study of Y3N@C88. Inorg Chem 50(10):4256–4259CrossRef Fu W, Zhang J, Champion H et al (2011) Electronic properties and 13C NMR structural study of Y3N@C88. Inorg Chem 50(10):4256–4259CrossRef
207.
go back to reference Beavers CM, Chaur MN, Olmstead MM et al (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C 2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131(32):11519–11524CrossRef Beavers CM, Chaur MN, Olmstead MM et al (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C 2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131(32):11519–11524CrossRef
208.
go back to reference Mercado BQ, Beavers CM, Olmstead MM et al (2008) Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene—Gd3N@C s (39663)-C82. J Am Chem Soc 130(25):7854–7855CrossRef Mercado BQ, Beavers CM, Olmstead MM et al (2008) Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene—Gd3N@C s (39663)-C82. J Am Chem Soc 130(25):7854–7855CrossRef
209.
go back to reference Melin F, Chaur MN, Engmann S et al (2007) The large Nd3N@C2n (40 ≤2n ≤49) cluster fullerene family: preferential templating of a C88 Cage by a trimetallic nitride cluster. Angew Chem-Int Edit 46(47):9032–9035CrossRef Melin F, Chaur MN, Engmann S et al (2007) The large Nd3N@C2n (40 ≤2n ≤49) cluster fullerene family: preferential templating of a C88 Cage by a trimetallic nitride cluster. Angew Chem-Int Edit 46(47):9032–9035CrossRef
210.
go back to reference Chaur MN, Melin F, Elliott B et al (2008) New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n = 40-53): expanding the preferential templating of the C88 cage and approaching the C96 cage. Chem-Eur J 14(15):4594–4599CrossRef Chaur MN, Melin F, Elliott B et al (2008) New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n = 40-53): expanding the preferential templating of the C88 cage and approaching the C96 cage. Chem-Eur J 14(15):4594–4599CrossRef
211.
go back to reference Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43 < n<55): preferential formation of La3N@C96. Chem-Eur J 14(27):8213–8219CrossRef Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43 < n<55): preferential formation of La3N@C96. Chem-Eur J 14(27):8213–8219CrossRef
212.
go back to reference Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. J Am Chem Soc 129(38):11835–11849CrossRef Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. J Am Chem Soc 129(38):11835–11849CrossRef
213.
go back to reference Valencia R, Rodriguez-Fortea A, Clotet A et al (2009) Electronic structure and redox properties of metal nitride endohedral fullerenes M3N@C2n (M = Sc, Y, La, and Gd; 2n = 80, 84, 88, 92, 96). Chem-Eur J 15(41):10997–11009CrossRef Valencia R, Rodriguez-Fortea A, Clotet A et al (2009) Electronic structure and redox properties of metal nitride endohedral fullerenes M3N@C2n (M = Sc, Y, La, and Gd; 2n = 80, 84, 88, 92, 96). Chem-Eur J 15(41):10997–11009CrossRef
214.
go back to reference Chaur MN, Valencia R, Rodriguez-Fortea A et al (2009) Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C 2n 6− model. Angew Chem-Int Edit 48(8):1425–1428CrossRef Chaur MN, Valencia R, Rodriguez-Fortea A et al (2009) Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C 2n 6− model. Angew Chem-Int Edit 48(8):1425–1428CrossRef
215.
go back to reference Svitova AL, Popov AA, Dunsch L (2013) Gd/Sc-based mixed metal nitride cluster fullerenes: the mutual influence of the cage and cluster size and the role of Sc in the electronic structure. Inorg Chem 52(6):3368–3380CrossRef Svitova AL, Popov AA, Dunsch L (2013) Gd/Sc-based mixed metal nitride cluster fullerenes: the mutual influence of the cage and cluster size and the role of Sc in the electronic structure. Inorg Chem 52(6):3368–3380CrossRef
216.
go back to reference Wu J, Wang T, Ma Y et al (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C 2. J Phys Chem C 115(48):23755–23759CrossRef Wu J, Wang T, Ma Y et al (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C 2. J Phys Chem C 115(48):23755–23759CrossRef
217.
go back to reference Yang S, Chen C, Liu F et al (2013) An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@C s (6)-C82. Sci Rep 3:1487CrossRef Yang S, Chen C, Liu F et al (2013) An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@C s (6)-C82. Sci Rep 3:1487CrossRef
218.
go back to reference Liu F, Wang S, Guan J et al (2014) Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C 2(5)-C82. Inorg Chem 53(10):5201–5205CrossRef Liu F, Wang S, Guan J et al (2014) Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C 2(5)-C82. Inorg Chem 53(10):5201–5205CrossRef
219.
go back to reference Liu F, Gao C-L, Deng Q et al (2016) Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. J Am Chem Soc 138(44):14764–14771CrossRef Liu F, Gao C-L, Deng Q et al (2016) Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. J Am Chem Soc 138(44):14764–14771CrossRef
220.
go back to reference Wang T, Wu J, Feng Y (2014) Scandium carbide/cyanide alloyed cluster inside fullerene cage: synthesis and structural studies of Sc3(μ3-C2)(μ3-CN)@I h -C80. Dalton Trans 43:16270–16274CrossRef Wang T, Wu J, Feng Y (2014) Scandium carbide/cyanide alloyed cluster inside fullerene cage: synthesis and structural studies of Sc33-C2)(μ3-CN)@I h -C80. Dalton Trans 43:16270–16274CrossRef
221.
go back to reference Stevenson S, Mackey MA, Stuart MA et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. synthesis, isolation, and structural characterization of Sc4(μ3-O)2@I h -C80. J Am Chem Soc 130(36):11844–11845CrossRef Stevenson S, Mackey MA, Stuart MA et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. synthesis, isolation, and structural characterization of Sc43-O)2@I h -C80. J Am Chem Soc 130(36):11844–11845CrossRef
222.
go back to reference Mercado BQ, Olmstead MM, Beavers CM et al (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4(μ3-O)3@I h -C80. Chem Commun 46:279–281CrossRef Mercado BQ, Olmstead MM, Beavers CM et al (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc43-O)3@I h -C80. Chem Commun 46:279–281CrossRef
223.
go back to reference Valencia R, Rodriguez-Fortea A, Stevenson S et al (2009) Electronic structures of scandium oxide endohedral metallofullerenes, Sc4(μ3-O)n@I h -C80 (n = 2, 3). Inorg Chem 48:5957–5961CrossRef Valencia R, Rodriguez-Fortea A, Stevenson S et al (2009) Electronic structures of scandium oxide endohedral metallofullerenes, Sc43-O)n@I h -C80 (n = 2, 3). Inorg Chem 48:5957–5961CrossRef
224.
go back to reference Mercado BQ, Stuart MA, Mackey MA et al (2010) Sc2(μ 2-O) trapped in a fullerene cage: the isolation and structural characterization of Sc2(μ 2-O)@C s (6)-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection. J Am Chem Soc 132:12098–12105CrossRef Mercado BQ, Stuart MA, Mackey MA et al (2010) Sc2(μ 2-O) trapped in a fullerene cage: the isolation and structural characterization of Sc2(μ 2-O)@C s (6)-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection. J Am Chem Soc 132:12098–12105CrossRef
225.
go back to reference Tang Q, Abella L, Hao Y et al (2016) Sc2O@C 3v (8)-C82: a missing isomer of Sc2O@C82. Inorg Chem 55(4):1926–1933CrossRef Tang Q, Abella L, Hao Y et al (2016) Sc2O@C 3v (8)-C82: a missing isomer of Sc2O@C82. Inorg Chem 55(4):1926–1933CrossRef
226.
go back to reference Feng L, Zhang M, Hao Y et al (2016) Endohedrally stabilized C70 isomer with fused pentagons characterized by crystallography. Dalton Trans 45:8142–8148CrossRef Feng L, Zhang M, Hao Y et al (2016) Endohedrally stabilized C70 isomer with fused pentagons characterized by crystallography. Dalton Trans 45:8142–8148CrossRef
227.
go back to reference Yang T, Hao Y, Abella L et al (2015) Sc2O@T d (19151)-C76: hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies. Chem-Eur J 21(31):11110–11117CrossRef Yang T, Hao Y, Abella L et al (2015) Sc2O@T d (19151)-C76: hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies. Chem-Eur J 21(31):11110–11117CrossRef
228.
go back to reference Tang Q, Abella L, Hao Y et al (2015) Sc2O@C 2v (5)-C80: dimetallic oxide cluster inside a C80 fullerene cage. Inorg Chem 54(20):9845–9852CrossRef Tang Q, Abella L, Hao Y et al (2015) Sc2O@C 2v (5)-C80: dimetallic oxide cluster inside a C80 fullerene cage. Inorg Chem 54(20):9845–9852CrossRef
229.
go back to reference Stevenson S (2014) Metal Oxide Clusterfullerenes. In: Yang S, Wang C-R (eds) Endohedral fullerenes. From fundamentals to applications. World Scientific, Singapore, pp 179–210CrossRef Stevenson S (2014) Metal Oxide Clusterfullerenes. In: Yang S, Wang C-R (eds) Endohedral fullerenes. From fundamentals to applications. World Scientific, Singapore, pp 179–210CrossRef
230.
go back to reference Mercado BQ, Chen N, Rodriguez-Fortea A et al (2011) The shape of the Sc2(μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc2(μ2-S)@C s (6)-C82 and Sc2(μ2-S)@C 3v (8)-C82. J Am Chem Soc 133(17):6752–6760CrossRef Mercado BQ, Chen N, Rodriguez-Fortea A et al (2011) The shape of the Sc22-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc22-S)@C s (6)-C82 and Sc22-S)@C 3v (8)-C82. J Am Chem Soc 133(17):6752–6760CrossRef
231.
go back to reference Chen N, Mulet-Gas M, Li Y-Y et al (2013) Sc2S@C 2(7892)-C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4(1):180–186CrossRef Chen N, Mulet-Gas M, Li Y-Y et al (2013) Sc2S@C 2(7892)-C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4(1):180–186CrossRef
232.
go back to reference Nakao K, Kurita N, Fujita M (1994) Ab-initio molecular-orbital calculation for C70 and seven isomers of C80. Phys Rev B 49(16):11415–11420CrossRef Nakao K, Kurita N, Fujita M (1994) Ab-initio molecular-orbital calculation for C70 and seven isomers of C80. Phys Rev B 49(16):11415–11420CrossRef
233.
go back to reference Rodriguez-Fortea A, Alegret N, Balch AL et al (2010) The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat Chem 2(11):955–961CrossRef Rodriguez-Fortea A, Alegret N, Balch AL et al (2010) The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat Chem 2(11):955–961CrossRef
234.
go back to reference Valencia R, Rodríguez-Fortea A, Poblet JM (2008) Understanding the stabilization of metal carbide endohedral fullerenes M2C2@C82 and related systems. J Phys ChemA 112(20):4550–4555CrossRef Valencia R, Rodríguez-Fortea A, Poblet JM (2008) Understanding the stabilization of metal carbide endohedral fullerenes M2C2@C82 and related systems. J Phys ChemA 112(20):4550–4555CrossRef
235.
go back to reference Stevenson S, Phillips JP, Reid JE et al (2004) Pyramidalization of Gd3N inside a C80 cage. the synthesis and structure of Gd3N@C80. Chem Commun 24:2814–2815CrossRef Stevenson S, Phillips JP, Reid JE et al (2004) Pyramidalization of Gd3N inside a C80 cage. the synthesis and structure of Gd3N@C80. Chem Commun 24:2814–2815CrossRef
236.
go back to reference Chaur MN, Aparicio-Angles X, Mercado BQ et al (2010) Structural and electrochemical property correlations of metallic nitride endohedral metallofullerenes. J Phys Chem C 114(30):13003–13009CrossRef Chaur MN, Aparicio-Angles X, Mercado BQ et al (2010) Structural and electrochemical property correlations of metallic nitride endohedral metallofullerenes. J Phys Chem C 114(30):13003–13009CrossRef
237.
go back to reference Kobayashi K, Nagase S, Yoshida M et al (1997) Endohedral metallofullerenes. Are the isolated pentagon rule and fullerene structures always satisfied? J Am Chem Soc 119(51):12693–12694CrossRef Kobayashi K, Nagase S, Yoshida M et al (1997) Endohedral metallofullerenes. Are the isolated pentagon rule and fullerene structures always satisfied? J Am Chem Soc 119(51):12693–12694CrossRef
238.
go back to reference Wang CR, Kai T, Tomiyama T et al (2000) C66 fullerene encaging a scandium dimer. Nature 408:426–427CrossRef Wang CR, Kai T, Tomiyama T et al (2000) C66 fullerene encaging a scandium dimer. Nature 408:426–427CrossRef
239.
go back to reference Zhang Y, Ghiassi KB, Deng Q et al (2015) Synthesis and structure of LaSc2N@C s (hept)-C80 with one heptagon and thirteen pentagons. Angew Chem-Int Edit Engl 52(2):495–499 Zhang Y, Ghiassi KB, Deng Q et al (2015) Synthesis and structure of LaSc2N@C s (hept)-C80 with one heptagon and thirteen pentagons. Angew Chem-Int Edit Engl 52(2):495–499
240.
go back to reference Gan L-H, Lei D, Fowler PW (2016) Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. J Comput Chem 37(20):1907–1913CrossRef Gan L-H, Lei D, Fowler PW (2016) Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. J Comput Chem 37(20):1907–1913CrossRef
241.
go back to reference Chen C-H, Abella L, Cerón MR et al (2016) Zigzag Sc2C2 carbide cluster inside a [88] fullerene cage with one heptagon, Sc2C2@C s (hept)-C88: a kinetically trapped fullerene formed by C2 insertion? J Am Chem Soc 138(39):13030–13037CrossRef Chen C-H, Abella L, Cerón MR et al (2016) Zigzag Sc2C2 carbide cluster inside a [88] fullerene cage with one heptagon, Sc2C2@C s (hept)-C88: a kinetically trapped fullerene formed by C2 insertion? J Am Chem Soc 138(39):13030–13037CrossRef
Metadata
Title
Synthesis and Molecular Structures of Endohedral Fullerenes
Author
Alexey A. Popov
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-47049-8_1

Premium Partners