Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Electrochemistry and Frontier Molecular Orbitals of Endohedral Metallofullerenes

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fullerenes exhibit rich redox activity and are able to accommodate up to 6 surplus electrons or give away 1–2 electrons in solution. EMFs inherit this property from empty fullerenes, and also add a new dimension to the redox behavior because endohedral clusters can exhibit their own redox activity despite their shielding by the carbon cage. This chapter provides a systematic overview of electrochemical properties of different classes of endohedral metallofullerenes. In particular, the balance between fullerene- and cluster-based redox activity in complex endohedral metallofullerenes is discussed using frontier molecular orbitals as a guide.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Suzuki T, Maruyama Y, Kato T et al (1993) Electrochemical properties of La@C82. J Am Chem Soc 115(23):11006–11007CrossRef Suzuki T, Maruyama Y, Kato T et al (1993) Electrochemical properties of La@C82. J Am Chem Soc 115(23):11006–11007CrossRef
2.
go back to reference Suzuki T, Maruyama Y, Kato T et al (1995) Electrochemical properties of fullerenolanthanides. Synth Met 70(1–3):1443–1446CrossRef Suzuki T, Maruyama Y, Kato T et al (1995) Electrochemical properties of fullerenolanthanides. Synth Met 70(1–3):1443–1446CrossRef
3.
go back to reference Suzuki T, Kikuchi K, Oguri F et al (1996) Electrochemical properties of fullerenolanthanides. Tetrahedron 52(14):4973–4982CrossRef Suzuki T, Kikuchi K, Oguri F et al (1996) Electrochemical properties of fullerenolanthanides. Tetrahedron 52(14):4973–4982CrossRef
4.
go back to reference Suzuki T, Maruyama Y, Kato T et al (1995) Electrochemistry and Ab-Initio study of the dimetallofullerene La2@C80. Angew Chem-Int Edit Engl 34(10):1094–1096CrossRef Suzuki T, Maruyama Y, Kato T et al (1995) Electrochemistry and Ab-Initio study of the dimetallofullerene La2@C80. Angew Chem-Int Edit Engl 34(10):1094–1096CrossRef
5.
go back to reference Kikuchi K, Nakao Y, Suzuki S et al (1994) Characterization of the isolated Y@C82. J Am Chem Soc 116(20):9367–9368CrossRef Kikuchi K, Nakao Y, Suzuki S et al (1994) Characterization of the isolated Y@C82. J Am Chem Soc 116(20):9367–9368CrossRef
6.
go back to reference Xie QS, Perezcordero E, Echegoyen L (1992) Electrochemical detection of C 60 6- and C 70 6- —enhanced stability of fullerides in solution. J Am Chem Soc 114(10):3978–3980CrossRef Xie QS, Perezcordero E, Echegoyen L (1992) Electrochemical detection of C 60 6- and C 70 6- —enhanced stability of fullerides in solution. J Am Chem Soc 114(10):3978–3980CrossRef
7.
go back to reference Reed CA, Bolskar RD (2000) Discrete fulleride anions and fullerenium cations. Chem Rev 100(3):1075–1119CrossRef Reed CA, Bolskar RD (2000) Discrete fulleride anions and fullerenium cations. Chem Rev 100(3):1075–1119CrossRef
8.
go back to reference Zalibera M, Rapta P, Popov AA et al (2009) Charged states of four isomers of C84 fullerene: In Situ ESR and Vis-’NIR Spectroelectrochemistry and DFT Calculations. J Phys Chem C 113(13):5141–5149 Zalibera M, Rapta P, Popov AA et al (2009) Charged states of four isomers of C84 fullerene: In Situ ESR and Vis-’NIR Spectroelectrochemistry and DFT Calculations. J Phys Chem C 113(13):5141–5149
9.
go back to reference Zalibera M, Popov AA, Kalbac M et al (2008) The extended view on the empty C 2(3)-C82 fullerene: isolation, spectroscopic, electrochemical, and spectroelectrochemical characterization and DFT calculations. Chem-Eur J 14(32):9960–9967CrossRef Zalibera M, Popov AA, Kalbac M et al (2008) The extended view on the empty C 2(3)-C82 fullerene: isolation, spectroscopic, electrochemical, and spectroelectrochemical characterization and DFT calculations. Chem-Eur J 14(32):9960–9967CrossRef
10.
go back to reference Gao XA, Van Caemelbecke E, Kadish KM (1998) Visible and near-infrared absorption spectra of singly and doubly reduced C76 fullerene anions. Electrochem Solid State Lett 1(5):222–223CrossRef Gao XA, Van Caemelbecke E, Kadish KM (1998) Visible and near-infrared absorption spectra of singly and doubly reduced C76 fullerene anions. Electrochem Solid State Lett 1(5):222–223CrossRef
11.
go back to reference Xie QS, Arias F, Echegoyen L (1993) Electrochemically-reversible, single-electron oxidation of C60 and C70. J Am Chem Soc 115(21):9818–9819CrossRef Xie QS, Arias F, Echegoyen L (1993) Electrochemically-reversible, single-electron oxidation of C60 and C70. J Am Chem Soc 115(21):9818–9819CrossRef
12.
go back to reference Dubois D, Kadish KM, Flanagan S et al (1991) Electrochemical detection of fulleronium and highly reduced fulleride C60 5- Ions in solution. J Am Chem Soc 113(20):7773–7774CrossRef Dubois D, Kadish KM, Flanagan S et al (1991) Electrochemical detection of fulleronium and highly reduced fulleride C60 5- Ions in solution. J Am Chem Soc 113(20):7773–7774CrossRef
13.
go back to reference Bruno C, Doubitski I, Marcaccio M et al (2003) Electrochemical generation of C60 2+ and C60 3+. J Am Chem Soc 125(51):15738–15739CrossRef Bruno C, Doubitski I, Marcaccio M et al (2003) Electrochemical generation of C60 2+ and C60 3+. J Am Chem Soc 125(51):15738–15739CrossRef
14.
go back to reference Webster RD, Heath GA (2001) Voltammetric, EPR and UV-VIS-NIR spectroscopic studies associated with the one-electron oxidation of C60 and C70 in 1,1′,2,2′-tetrachloroethane containing trifluoromethanesulfonic acid. Phys Chem Chem Phys 3(13):2588–2594CrossRef Webster RD, Heath GA (2001) Voltammetric, EPR and UV-VIS-NIR spectroscopic studies associated with the one-electron oxidation of C60 and C70 in 1,1′,2,2′-tetrachloroethane containing trifluoromethanesulfonic acid. Phys Chem Chem Phys 3(13):2588–2594CrossRef
15.
go back to reference Yang YF, Arias F, Echegoyen L et al (1995) Reversible fullerene electrochemistry—correlation with the Homo-Lumo energy difference for C60, C70, C76, C78, and C84. J Am Chem Soc 117(29):7801–7804CrossRef Yang YF, Arias F, Echegoyen L et al (1995) Reversible fullerene electrochemistry—correlation with the Homo-Lumo energy difference for C60, C70, C76, C78, and C84. J Am Chem Soc 117(29):7801–7804CrossRef
16.
go back to reference Okada H, Komuro T, Sakai T et al (2012) Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6 −]). RSC Adv 2(28):10624–10631CrossRef Okada H, Komuro T, Sakai T et al (2012) Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6 ]). RSC Adv 2(28):10624–10631CrossRef
17.
go back to reference Popov AA, Dunsch L (2011) Electrochemistry in Cavea: endohedral redox reactions of encaged species in fullerenes. J Phys Chem Lett 2(7):786–794CrossRef Popov AA, Dunsch L (2011) Electrochemistry in Cavea: endohedral redox reactions of encaged species in fullerenes. J Phys Chem Lett 2(7):786–794CrossRef
18.
go back to reference Zhang Y, Popov AA (2014) Transition-metal and rare-earth-metal redox couples inside carbon cages: fullerenes acting as innocent ligands. Organometallics 33(18):4537–4549CrossRef Zhang Y, Popov AA (2014) Transition-metal and rare-earth-metal redox couples inside carbon cages: fullerenes acting as innocent ligands. Organometallics 33(18):4537–4549CrossRef
19.
go back to reference Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(8):678–683CrossRef Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(8):678–683CrossRef
20.
go back to reference Liu J, Shi Z, Gu Z (2009) The cage and metal effect: spectroscopy and electrochemical survey of a series of Sm-containing high metallofullerenes. Chem-Asian J 4(11):1703–1711CrossRef Liu J, Shi Z, Gu Z (2009) The cage and metal effect: spectroscopy and electrochemical survey of a series of Sm-containing high metallofullerenes. Chem-Asian J 4(11):1703–1711CrossRef
21.
go back to reference Lu X, Slanina Z, Akasaka T et al (2010) Yb@C2n (n = 40, 41, 42): new fullerene allotropes with unexplored electrochemical properties. J Am Chem Soc 132(16):5896–5905CrossRef Lu X, Slanina Z, Akasaka T et al (2010) Yb@C2n (n = 40, 41, 42): new fullerene allotropes with unexplored electrochemical properties. J Am Chem Soc 132(16):5896–5905CrossRef
22.
go back to reference Xu JX, Li MX, Shi ZJ et al (2005) Electrochemical survey: the effect of the cage size and structure on the electronic structures of a series of ytterbium metallofullerenes. Chem-Eur J 12(2):562–567CrossRef Xu JX, Li MX, Shi ZJ et al (2005) Electrochemical survey: the effect of the cage size and structure on the electronic structures of a series of ytterbium metallofullerenes. Chem-Eur J 12(2):562–567CrossRef
23.
go back to reference Zhang Y, Xu JX, Hao C et al (2006) Synthesis, isolation, spectroscopic and electrochemical characterization of some calcium-containing metallofullerenes. Carbon 44(3):475–479CrossRef Zhang Y, Xu JX, Hao C et al (2006) Synthesis, isolation, spectroscopic and electrochemical characterization of some calcium-containing metallofullerenes. Carbon 44(3):475–479CrossRef
24.
go back to reference Sun BY, Li MX, Luo HX et al (2002) Electrochemical properties of metallofullerenes and their anions. Electrochim Acta 47(21):3545–3549CrossRef Sun BY, Li MX, Luo HX et al (2002) Electrochemical properties of metallofullerenes and their anions. Electrochim Acta 47(21):3545–3549CrossRef
25.
go back to reference Kuran P, Krause M, Bartl A et al (1998) Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene. Chem Phys Lett 292(4–6):580–586CrossRef Kuran P, Krause M, Bartl A et al (1998) Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene. Chem Phys Lett 292(4–6):580–586CrossRef
26.
go back to reference Hu Z, Hao Y, Slanina Z et al (2015) Popular C82 fullerene cage encapsulating a divalent metal ion Sm2+: structure and electrochemistry. Inorg Chem 54(5):2103–2108CrossRef Hu Z, Hao Y, Slanina Z et al (2015) Popular C82 fullerene cage encapsulating a divalent metal ion Sm2+: structure and electrochemistry. Inorg Chem 54(5):2103–2108CrossRef
27.
go back to reference Xu W, Niu B, Feng L et al (2012) Access to an unexplored chiral C82 cage by encaging a divalent metal: structural elucidation and electrochemical studies of Sm@C 2(5)-C82. Chem-Eur J 18(45):14246–14249CrossRef Xu W, Niu B, Feng L et al (2012) Access to an unexplored chiral C82 cage by encaging a divalent metal: structural elucidation and electrochemical studies of Sm@C 2(5)-C82. Chem-Eur J 18(45):14246–14249CrossRef
28.
go back to reference Hao Y, Feng L, Xu W et al (2015) Sm@C2v (19138)-C76: a non-IPR cage stabilized by a divalent metal ion. Inorg Chem 54(9):4243–4248CrossRef Hao Y, Feng L, Xu W et al (2015) Sm@C2v (19138)-C76: a non-IPR cage stabilized by a divalent metal ion. Inorg Chem 54(9):4243–4248CrossRef
29.
go back to reference Liu F, Wang S, Guan J et al (2014) Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C 2(5)-C82. Inorg Chem 53(10):5201–5205CrossRef Liu F, Wang S, Guan J et al (2014) Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C 2(5)-C82. Inorg Chem 53(10):5201–5205CrossRef
30.
go back to reference Yang S, Chen C, Liu F et al (2013) An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@C s (6)-C82. Sci Rep 3:1487CrossRef Yang S, Chen C, Liu F et al (2013) An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@C s (6)-C82. Sci Rep 3:1487CrossRef
31.
go back to reference Liu F, Gao C-L, Deng Q et al (2016) Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. J Am Chem Soc 138(44):14764–14771CrossRef Liu F, Gao C-L, Deng Q et al (2016) Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. J Am Chem Soc 138(44):14764–14771CrossRef
32.
go back to reference Wang W, Ding J, Yang S et al (1997) Electrochemical properties of 4f-block metallofullerenes. In: Kadish KM, Ruoff RS (eds) Fullerenes. Recent advances in the chemistry and physics of fullerenes and related materials, vol 4. Electrochemical society, Pennington, pp 417–428 Wang W, Ding J, Yang S et al (1997) Electrochemical properties of 4f-block metallofullerenes. In: Kadish KM, Ruoff RS (eds) Fullerenes. Recent advances in the chemistry and physics of fullerenes and related materials, vol 4. Electrochemical society, Pennington, pp 417–428
33.
go back to reference Yamada M, Feng L, Wakahara T et al (2005) Synthesis and characterization of exohedrally silylated M@C82 (M = Y and La). J Phys Chem B 109(13):6049–6051CrossRef Yamada M, Feng L, Wakahara T et al (2005) Synthesis and characterization of exohedrally silylated M@C82 (M = Y and La). J Phys Chem B 109(13):6049–6051CrossRef
34.
go back to reference Maeda Y, Matsunaga Y, Wakahara T et al (2004) Isolation and characterization of a carbene derivative of La@C82. J Am Chem Soc 126(22):6858–6859CrossRef Maeda Y, Matsunaga Y, Wakahara T et al (2004) Isolation and characterization of a carbene derivative of La@C82. J Am Chem Soc 126(22):6858–6859CrossRef
35.
go back to reference Feng L, Wakahara T, Nakahodo T et al (2006) The bingel monoadducts of La@C82: synthesis, characterization, and electrochemistry. Chem-Eur J 12(21):5578–5586CrossRef Feng L, Wakahara T, Nakahodo T et al (2006) The bingel monoadducts of La@C82: synthesis, characterization, and electrochemistry. Chem-Eur J 12(21):5578–5586CrossRef
36.
go back to reference Takano Y, Yomogida A, Nikawa H et al (2008) Radical coupling reaction of paramagnetic endohedral metallofullerene La@C82. J Am Chem Soc 130(48):16224–16230CrossRef Takano Y, Yomogida A, Nikawa H et al (2008) Radical coupling reaction of paramagnetic endohedral metallofullerene La@C82. J Am Chem Soc 130(48):16224–16230CrossRef
37.
go back to reference Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113(8):5989–6113CrossRef Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113(8):5989–6113CrossRef
38.
go back to reference Yamamoto K (1999) Electrochemical study on electronic structure of mono-lanthanofullerenes of La@Cn (n = 82, 86, and 90). In: Kamat PV, Guldi D, Kadish KM (eds) Fullerenes. Recent advances in the chemistry and physics of fullerenes and related materials, vol 7. Electrochemical Society, Pennington, pp 761–770 Yamamoto K (1999) Electrochemical study on electronic structure of mono-lanthanofullerenes of La@Cn (n = 82, 86, and 90). In: Kamat PV, Guldi D, Kadish KM (eds) Fullerenes. Recent advances in the chemistry and physics of fullerenes and related materials, vol 7. Electrochemical Society, Pennington, pp 761–770
39.
go back to reference Popov AA, Avdoshenko SM, Pendás AM et al (2012) Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun 48:8031–8050CrossRef Popov AA, Avdoshenko SM, Pendás AM et al (2012) Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun 48:8031–8050CrossRef
40.
go back to reference Lu X, Nikawa H, Nakahodo T et al (2008) Chemical understanding of a Non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La2@C72. J Am Chem Soc 130:9129–9136CrossRef Lu X, Nikawa H, Nakahodo T et al (2008) Chemical understanding of a Non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La2@C72. J Am Chem Soc 130:9129–9136CrossRef
41.
go back to reference Cao BP, Wakahara T, Tsuchiya T et al (2004) Isolation, characterization, and theoretical study of La2@C78. J Am Chem Soc 126(30):9164–9165CrossRef Cao BP, Wakahara T, Tsuchiya T et al (2004) Isolation, characterization, and theoretical study of La2@C78. J Am Chem Soc 126(30):9164–9165CrossRef
42.
go back to reference Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem-Eur J 15:9486–9493CrossRef Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem-Eur J 15:9486–9493CrossRef
43.
go back to reference Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a Non-IPR fullerene cage: Ce2@C72. J Phys Chem A 112:7627–7631CrossRef Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a Non-IPR fullerene cage: Ce2@C72. J Phys Chem A 112:7627–7631CrossRef
44.
go back to reference Yamada M, Wakahara T, Tsuchiya T et al (2008) Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. Chem Commun 558–560 Yamada M, Wakahara T, Tsuchiya T et al (2008) Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. Chem Commun 558–560
45.
go back to reference Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127(42):14570–14571CrossRef Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127(42):14570–14571CrossRef
46.
go back to reference Suzuki M, Mizorogi N, Yang T et al (2013) La2@C s (17490)-C76: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal-pentalene interactions. Chem-Eur J 19(50):17125–17130CrossRef Suzuki M, Mizorogi N, Yang T et al (2013) La2@C s (17490)-C76: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal-pentalene interactions. Chem-Eur J 19(50):17125–17130CrossRef
47.
go back to reference Fu W, Zhang J, Fuhrer T et al (2011) Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc 133:9741–9750CrossRef Fu W, Zhang J, Fuhrer T et al (2011) Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc 133:9741–9750CrossRef
48.
go back to reference Kato T (2007) Metal dimer and trimer within spherical carbon cage. J Mol Struct 838(1–3):84–88CrossRef Kato T (2007) Metal dimer and trimer within spherical carbon cage. J Mol Struct 838(1–3):84–88CrossRef
49.
go back to reference Zuo T, Xu L, Beavers CM et al (2008) M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M…M bonding interactions inside Aza[80]fullerene cages. J Am Chem Soc 130(39):12992–12997CrossRef Zuo T, Xu L, Beavers CM et al (2008) M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M…M bonding interactions inside Aza[80]fullerene cages. J Am Chem Soc 130(39):12992–12997CrossRef
50.
go back to reference Kurihara H, Lu X, Iiduka Y et al (2012) Sc2@C 3v (8)-C82 vs. Sc2C2@C 3v (8)-C82: drastic effect of C2 capture on the redox properties of scandium metallofullerenes. Chem Commun 48:1290–1292CrossRef Kurihara H, Lu X, Iiduka Y et al (2012) Sc2@C 3v (8)-C82 vs. Sc2C2@C 3v (8)-C82: drastic effect of C2 capture on the redox properties of scandium metallofullerenes. Chem Commun 48:1290–1292CrossRef
51.
go back to reference Iiduka Y, Wakahara T, Nakajima K et al (2007) Experimental and theoretical studies of the scandium carbide endohedral metallofullerene Sc2C2@C82 and its carbene derivative. Angew Chem-Int Edit 46(29):5562–5564CrossRef Iiduka Y, Wakahara T, Nakajima K et al (2007) Experimental and theoretical studies of the scandium carbide endohedral metallofullerene Sc2C2@C82 and its carbene derivative. Angew Chem-Int Edit 46(29):5562–5564CrossRef
52.
go back to reference Tang Q, Abella L, Hao Y et al (2016) Sc2O@C 3v (8)-C82: a missing isomer of Sc2O@C82. Inorg Chem 55(4):1926–1933CrossRef Tang Q, Abella L, Hao Y et al (2016) Sc2O@C 3v (8)-C82: a missing isomer of Sc2O@C82. Inorg Chem 55(4):1926–1933CrossRef
53.
go back to reference Mercado BQ, Chen N, Rodriguez-Fortea A et al (2011) The shape of the Sc2(μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc2(μ2-S)@C s (6)-C82 and Sc2(μ2-S)@C 3v (8)-C82. J Am Chem Soc 133(17):6752–6760CrossRef Mercado BQ, Chen N, Rodriguez-Fortea A et al (2011) The shape of the Sc22-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc22-S)@C s (6)-C82 and Sc22-S)@C 3v (8)-C82. J Am Chem Soc 133(17):6752–6760CrossRef
54.
go back to reference Zhang M, Hao Y, Li X et al (2014) Facile synthesis of an extensive family of Sc2O@C2n (n = 35-47) and chemical insight into the smallest member of Sc2O@C2(7892)-C70. J Phys Chem C 118(49):28883–28889CrossRef Zhang M, Hao Y, Li X et al (2014) Facile synthesis of an extensive family of Sc2O@C2n (n = 35-47) and chemical insight into the smallest member of Sc2O@C2(7892)-C70. J Phys Chem C 118(49):28883–28889CrossRef
55.
go back to reference Chen N, Mulet-Gas M, Li Y-Y et al (2013) Sc2S@C 2(7892)-C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4(1):180–186CrossRef Chen N, Mulet-Gas M, Li Y-Y et al (2013) Sc2S@C 2(7892)-C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4(1):180–186CrossRef
56.
go back to reference Feng Y, Wang T, Wu J et al (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@C s -C72. Nanoscale 5(15):6704–6707CrossRef Feng Y, Wang T, Wu J et al (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@C s -C72. Nanoscale 5(15):6704–6707CrossRef
57.
go back to reference Chen N, Beavers CM, Mulet-Gas M et al (2012) Sc2S@C s (10528)-C72: a dimetallic sulfide endohedral fullerene with a Non-IPR cage. J Am Chem Soc 134(18):7851–7860CrossRef Chen N, Beavers CM, Mulet-Gas M et al (2012) Sc2S@C s (10528)-C72: a dimetallic sulfide endohedral fullerene with a Non-IPR cage. J Am Chem Soc 134(18):7851–7860CrossRef
58.
go back to reference Yang T, Hao Y, Abella L et al (2015) Sc2O@T d (19151)-C76: hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies. Chem-Eur J 21(31):11110–11117CrossRef Yang T, Hao Y, Abella L et al (2015) Sc2O@T d (19151)-C76: hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies. Chem-Eur J 21(31):11110–11117CrossRef
59.
go back to reference Kurihara H, Lu X, Iiduka Y et al (2011) Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C 2v (5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J Am Chem Soc 133(8):2382–2385CrossRef Kurihara H, Lu X, Iiduka Y et al (2011) Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C 2v (5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J Am Chem Soc 133(8):2382–2385CrossRef
60.
go back to reference Tang Q, Abella L, Hao Y et al (2015) Sc2O@C 2v (5)-C80: dimetallic oxide cluster inside a C80 fullerene cage. Inorg Chem 54(20):9845–9852CrossRef Tang Q, Abella L, Hao Y et al (2015) Sc2O@C 2v (5)-C80: dimetallic oxide cluster inside a C80 fullerene cage. Inorg Chem 54(20):9845–9852CrossRef
61.
go back to reference Samoylova NA, Avdoshenko SM, Krylov DS et al (2017) Confining the spin between two metal atoms within the carbon cage: Redox-active metal-metal bonds in dimetallofullerenes and their stable cation radicals. Nanoscale doi: 10.1039/C7NR02288C Samoylova NA, Avdoshenko SM, Krylov DS et al (2017) Confining the spin between two metal atoms within the carbon cage: Redox-active metal-metal bonds in dimetallofullerenes and their stable cation radicals. Nanoscale doi: 10.​1039/​C7NR02288C
62.
go back to reference Lu X, Nakajima K, Iiduka Y et al (2011) Structural elucidation and regioselective functionalization of an unexplored carbide cluster metallofullerene Sc2C2@C s (6)-C82. J Am Chem Soc 133(48):19553–19558CrossRef Lu X, Nakajima K, Iiduka Y et al (2011) Structural elucidation and regioselective functionalization of an unexplored carbide cluster metallofullerene Sc2C2@C s (6)-C82. J Am Chem Soc 133(48):19553–19558CrossRef
63.
go back to reference Lu X, Nakajima K, Iiduka Y et al (2012) The long-believed Sc2@C 2v (17)-C84 is actually Sc2C2@C 2v (9)-C82: unambiguous structure assignment and chemical functionalization. Angew Chem-Int Edit Engl 51(24):5889–5892CrossRef Lu X, Nakajima K, Iiduka Y et al (2012) The long-believed Sc2@C 2v (17)-C84 is actually Sc2C2@C 2v (9)-C82: unambiguous structure assignment and chemical functionalization. Angew Chem-Int Edit Engl 51(24):5889–5892CrossRef
64.
go back to reference Chen C-H, Ghiassi KB, Cerón MR et al (2015) Beyond the butterfly: Sc2C2@C 2v (9)-C86, an endohedral fullerene containing a planar, twisted Sc2C2 unit with remarkable crystalline order in an unprecedented carbon cage. J Am Chem Soc 137(32):10116–10119CrossRef Chen C-H, Ghiassi KB, Cerón MR et al (2015) Beyond the butterfly: Sc2C2@C 2v (9)-C86, an endohedral fullerene containing a planar, twisted Sc2C2 unit with remarkable crystalline order in an unprecedented carbon cage. J Am Chem Soc 137(32):10116–10119CrossRef
65.
go back to reference Popov AA, Dunsch L (2008) Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical Sc3N@C80, and spatial spin charge separation as a general principle for anions of endohedral fullerenes with metal-localized lowest unoccupied molecular orbitals. J Am Chem Soc 130(52):17726–17742CrossRef Popov AA, Dunsch L (2008) Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical Sc3N@C80, and spatial spin charge separation as a general principle for anions of endohedral fullerenes with metal-localized lowest unoccupied molecular orbitals. J Am Chem Soc 130(52):17726–17742CrossRef
66.
go back to reference Jakes P, Dinse KP (2001) Chemically induced spin transfer to an encased molecular cluster: an EPR study of Sc3N@C80 radical anions. J Am Chem Soc 123(36):8854–8855CrossRef Jakes P, Dinse KP (2001) Chemically induced spin transfer to an encased molecular cluster: an EPR study of Sc3N@C80 radical anions. J Am Chem Soc 123(36):8854–8855CrossRef
67.
go back to reference Yang SF, Zalibera M, Rapta P et al (2006) Charge-induced reversible rearrangement of endohedral fullerenes: electrochemistry of tridysprosium nitride clusterfullerenes Dy3N@C2n (2n = 78, 80). Chem-Eur J 12(30):7848–7855CrossRef Yang SF, Zalibera M, Rapta P et al (2006) Charge-induced reversible rearrangement of endohedral fullerenes: electrochemistry of tridysprosium nitride clusterfullerenes Dy3N@C2n (2n = 78, 80). Chem-Eur J 12(30):7848–7855CrossRef
68.
go back to reference Tarabek J, Yang S, Dunsch L (2009) Redox properties of mixed lutetium/yttrium nitride clusterfullerenes: endohedral LuxY3-xN@C80(I) (x = 0-3) compounds. Chem Phys Chem 10(7):1037–1043CrossRef Tarabek J, Yang S, Dunsch L (2009) Redox properties of mixed lutetium/yttrium nitride clusterfullerenes: endohedral LuxY3-xN@C80(I) (x = 0-3) compounds. Chem Phys Chem 10(7):1037–1043CrossRef
69.
go back to reference Elliott B, Yu L, Echegoyen L (2005) A simple isomeric separation of D 5h and I h Sc3N@C80 by selective chemical oxidation. J Am Chem Soc 127(31):10885–10888CrossRef Elliott B, Yu L, Echegoyen L (2005) A simple isomeric separation of D 5h and I h Sc3N@C80 by selective chemical oxidation. J Am Chem Soc 127(31):10885–10888CrossRef
70.
go back to reference Chaur MN, Athans AJ, Echegoyen L (2008) Metallic nitride endohedral fullerenes: synthesis and electrochemical properties. Tetrahedron 64(50):11387–11393CrossRef Chaur MN, Athans AJ, Echegoyen L (2008) Metallic nitride endohedral fullerenes: synthesis and electrochemical properties. Tetrahedron 64(50):11387–11393CrossRef
71.
go back to reference Rapta P, Popov AA, Yang SF et al (2008) The charged states of Sc3N@C68: an in situ spectroelectrochemical study of the radical cation and radical anion of a Non-IPR fullerene. J Phys Chem A 112:5858–5865CrossRef Rapta P, Popov AA, Yang SF et al (2008) The charged states of Sc3N@C68: an in situ spectroelectrochemical study of the radical cation and radical anion of a Non-IPR fullerene. J Phys Chem A 112:5858–5865CrossRef
72.
go back to reference Popov AA, Avdoshenko SM, Cuniberti G et al (2011) Dimerization of radical-anions: nitride clusterfullerenes versus empty fullerenes. J Phys Chem Lett 1592–1600 Popov AA, Avdoshenko SM, Cuniberti G et al (2011) Dimerization of radical-anions: nitride clusterfullerenes versus empty fullerenes. J Phys Chem Lett 1592–1600
73.
go back to reference Konarev DV, Zorina LV, Khasanov SS et al (2016) A crystalline anionic complex of scandium nitride endometallofullerene: experimental observation of single-bonded (Sc3N@I h -C80 −)2 dimers. Chem Commun 52:10763–10766CrossRef Konarev DV, Zorina LV, Khasanov SS et al (2016) A crystalline anionic complex of scandium nitride endometallofullerene: experimental observation of single-bonded (Sc3N@I h -C80 )2 dimers. Chem Commun 52:10763–10766CrossRef
74.
go back to reference Yang SF, Rapta P, Dunsch L (2007) The spin state of a charged non-IPR fullerene: the stable radical cation of Sc3N@C68. Chem Commun 2:189–191CrossRef Yang SF, Rapta P, Dunsch L (2007) The spin state of a charged non-IPR fullerene: the stable radical cation of Sc3N@C68. Chem Commun 2:189–191CrossRef
75.
go back to reference Chaur MN, Aparicio-Angles X, Mercado BQ et al (2010) Structural and electrochemical property correlations of metallic nitride endohedral metallofullerenes. J Phys Chem C 114(30):13003–13009CrossRef Chaur MN, Aparicio-Angles X, Mercado BQ et al (2010) Structural and electrochemical property correlations of metallic nitride endohedral metallofullerenes. J Phys Chem C 114(30):13003–13009CrossRef
76.
go back to reference Cai T, Xu LS, Anderson MR et al (2006) Structure and enhanced reactivity rates of the D 5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589CrossRef Cai T, Xu LS, Anderson MR et al (2006) Structure and enhanced reactivity rates of the D 5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589CrossRef
77.
go back to reference Wei T, Wang S, Liu F et al (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137(8):3119–3123CrossRef Wei T, Wang S, Liu F et al (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137(8):3119–3123CrossRef
78.
go back to reference Beavers CM, Chaur MN, Olmstead MM et al (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C 2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131(32):11519–11524CrossRef Beavers CM, Chaur MN, Olmstead MM et al (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C 2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131(32):11519–11524CrossRef
79.
go back to reference Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829CrossRef Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829CrossRef
80.
go back to reference Fu W, Zhang J, Champion H et al (2011) Electronic properties and 13C NMR structural study of Y3N@C88. Inorg Chem 50(10):4256–4259CrossRef Fu W, Zhang J, Champion H et al (2011) Electronic properties and 13C NMR structural study of Y3N@C88. Inorg Chem 50(10):4256–4259CrossRef
81.
go back to reference Chaur MN, Melin F, Elliott B et al (2008) New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n = 40-53): expanding the preferential templating of the C88 cage and approaching the C96 cage. Chem-Eur J 14(15):4594–4599CrossRef Chaur MN, Melin F, Elliott B et al (2008) New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n = 40-53): expanding the preferential templating of the C88 cage and approaching the C96 cage. Chem-Eur J 14(15):4594–4599CrossRef
82.
go back to reference Chaur MN, Valencia R, Rodriguez-Fortea A et al (2009) Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C 2n 6- model. Angew Chem-Int Edit 48(8):1425–1428CrossRef Chaur MN, Valencia R, Rodriguez-Fortea A et al (2009) Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C 2n 6- model. Angew Chem-Int Edit 48(8):1425–1428CrossRef
83.
go back to reference Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43 < n < 55): preferential formation of La3N@C96. Chem-Eur J 14(27):8213–8219CrossRef Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43 < n < 55): preferential formation of La3N@C96. Chem-Eur J 14(27):8213–8219CrossRef
84.
go back to reference Cardona CM, Elliott B, Echegoyen L (2006) Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er). J Am Chem Soc 128(19):6480–6485CrossRef Cardona CM, Elliott B, Echegoyen L (2006) Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er). J Am Chem Soc 128(19):6480–6485CrossRef
85.
go back to reference Li F-F, Pinzon JR, Mercado BQ et al (2011) [2 + 2] cycloaddition reaction to Sc3N@I h -C80. The formation of very stable [5,6]- and [6,6]-adducts. J Am Chem Soc 133(5):1563–1571CrossRef Li F-F, Pinzon JR, Mercado BQ et al (2011) [2 + 2] cycloaddition reaction to Sc3N@I h -C80. The formation of very stable [5,6]- and [6,6]-adducts. J Am Chem Soc 133(5):1563–1571CrossRef
86.
go back to reference Pinzon JR, Zuo TM, Echegoyen L (2010) Synthesis and electrochemical studies of bingel-hirsch derivatives of M3N@I h -C80 (M = Sc, Lu). Chem-Eur J 16(16):4864–4869CrossRef Pinzon JR, Zuo TM, Echegoyen L (2010) Synthesis and electrochemical studies of bingel-hirsch derivatives of M3N@I h -C80 (M = Sc, Lu). Chem-Eur J 16(16):4864–4869CrossRef
87.
go back to reference Li F-F, Rodríguez-Fortea A, Peng P et al (2012) Electrosynthesis of a Sc3N@I h -C80 methano derivative from trianionic Sc3N@I h -C80. J Am Chem Soc 134(17):7480–7487CrossRef Li F-F, Rodríguez-Fortea A, Peng P et al (2012) Electrosynthesis of a Sc3N@I h -C80 methano derivative from trianionic Sc3N@I h -C80. J Am Chem Soc 134(17):7480–7487CrossRef
88.
go back to reference Feng L, Gayathri Radhakrishnan S, Mizorogi N et al (2011) Synthesis and charge-transfer chemistry of La2@I h -C80/Sc3N@I h -C80-Zinc porphyrin conjugates: impact of endohedral cluster. J Am Chem Soc 133(19):7608–7618CrossRef Feng L, Gayathri Radhakrishnan S, Mizorogi N et al (2011) Synthesis and charge-transfer chemistry of La2@I h -C80/Sc3N@I h -C80-Zinc porphyrin conjugates: impact of endohedral cluster. J Am Chem Soc 133(19):7608–7618CrossRef
89.
go back to reference Wakahara T, Iiduka Y, Ikenaga O et al (2006) Characterization of the bis-silylated endofullerene Sc3N@C80. J Am Chem Soc 128(30):9919–9925CrossRef Wakahara T, Iiduka Y, Ikenaga O et al (2006) Characterization of the bis-silylated endofullerene Sc3N@C80. J Am Chem Soc 128(30):9919–9925CrossRef
90.
go back to reference Popov AA, Shustova NB, Svitova AL et al (2010) Redox-tuning endohedral fullerene spin states: from the dication to the trianion radical of Sc3N@C80(CF3)2 in five reversible single-electron steps. Chem-Eur J 16(16):4721–4724CrossRef Popov AA, Shustova NB, Svitova AL et al (2010) Redox-tuning endohedral fullerene spin states: from the dication to the trianion radical of Sc3N@C80(CF3)2 in five reversible single-electron steps. Chem-Eur J 16(16):4721–4724CrossRef
91.
go back to reference Shustova NB, Peryshkov DV, Kuvychko IV et al (2011) Poly(perfluoroalkylation) of metallic nitride fullerenes reveals addition-pattern guidelines: synthesis and characterization of a family of Sc3N@C80(CF3)n (n = 2-16) and their radical anions. J Am Chem Soc 133(8):2672–2690CrossRef Shustova NB, Peryshkov DV, Kuvychko IV et al (2011) Poly(perfluoroalkylation) of metallic nitride fullerenes reveals addition-pattern guidelines: synthesis and characterization of a family of Sc3N@C80(CF3)n (n = 2-16) and their radical anions. J Am Chem Soc 133(8):2672–2690CrossRef
92.
go back to reference Piro NA, Robinson JR, Schelter EJ (2014) The electrochemical behavior of cerium(III/IV) complexes: thermodynamics, kinetics and applications in synthesis. Coord Chem Rev 260:21–36CrossRef Piro NA, Robinson JR, Schelter EJ (2014) The electrochemical behavior of cerium(III/IV) complexes: thermodynamics, kinetics and applications in synthesis. Coord Chem Rev 260:21–36CrossRef
93.
go back to reference Vargová A, Popov A, Rapta P et al (2010) Electrochemical tuning of spin states of the endohedral metallofullerene Y@C82 as probed by ESR spectroelectrochemistry. Chem Phys Chem 11(8):1650–1653CrossRef Vargová A, Popov A, Rapta P et al (2010) Electrochemical tuning of spin states of the endohedral metallofullerene Y@C82 as probed by ESR spectroelectrochemistry. Chem Phys Chem 11(8):1650–1653CrossRef
94.
go back to reference Zhang Y, Schiemenz S, Popov AA et al (2013) Strain-driven endohedral redox couple CeIV/CeIII in nitride clusterfullerenes CeM2N@C80 (M = Sc, Y, Lu). J Phys Chem Lett 4:2404–2409CrossRef Zhang Y, Schiemenz S, Popov AA et al (2013) Strain-driven endohedral redox couple CeIV/CeIII in nitride clusterfullerenes CeM2N@C80 (M = Sc, Y, Lu). J Phys Chem Lett 4:2404–2409CrossRef
95.
go back to reference Zhang Y, Popov AA, Dunsch L (2014) Endohedral metal or a fullerene cage based oxidation? Redox duality of nitride clusterfullerenes Ce x M3-x N@C78-88 (x = 1, 2; M = Sc and Y) dictated by the encaged metals and the carbon cage size. Nanoscale 6:1038–1048CrossRef Zhang Y, Popov AA, Dunsch L (2014) Endohedral metal or a fullerene cage based oxidation? Redox duality of nitride clusterfullerenes Ce x M3-x N@C78-88 (x = 1, 2; M = Sc and Y) dictated by the encaged metals and the carbon cage size. Nanoscale 6:1038–1048CrossRef
96.
go back to reference Chen C, Liu F, Li S et al (2012) Titanium/yttrium mixed metal nitride clusterfullerene TiY2N@C80: synthesis, isolation, and effect of the group-III metal. Inorg Chem 51(5):3039–3045CrossRef Chen C, Liu F, Li S et al (2012) Titanium/yttrium mixed metal nitride clusterfullerene TiY2N@C80: synthesis, isolation, and effect of the group-III metal. Inorg Chem 51(5):3039–3045CrossRef
97.
go back to reference Yang S, Chen C, Popov A et al (2009) An endohedral titanium(III) in a clusterfullerene: putting a non-group-III metal nitride into the C80-I h fullerene cage. Chem Commun 6391–6393 Yang S, Chen C, Popov A et al (2009) An endohedral titanium(III) in a clusterfullerene: putting a non-group-III metal nitride into the C80-I h fullerene cage. Chem Commun 6391–6393
98.
go back to reference Wei T, Wang S, Lu X et al (2016) Entrapping a group-VB transition metal, vanadium, within an endohedral metallofullerene: V x Sc3–x N@I h -C80 (x = 1, 2). J Am Chem Soc 138(1):207–214CrossRef Wei T, Wang S, Lu X et al (2016) Entrapping a group-VB transition metal, vanadium, within an endohedral metallofullerene: V x Sc3–x N@I h -C80 (x = 1, 2). J Am Chem Soc 138(1):207–214CrossRef
99.
go back to reference Popov AA, Chen C, Yang S et al (2010) Spin-flow vibrational spectroscopy of molecules with flexible spin density: electrochemistry, ESR, cluster and spin dynamics, and bonding in TiSc2N@C80. ACS Nano 4(8):4857–4871CrossRef Popov AA, Chen C, Yang S et al (2010) Spin-flow vibrational spectroscopy of molecules with flexible spin density: electrochemistry, ESR, cluster and spin dynamics, and bonding in TiSc2N@C80. ACS Nano 4(8):4857–4871CrossRef
100.
go back to reference Junghans K, Rosenkranz M, Popov AA (2016) Sc3CH@C80: selective 13C enrichment of the central carbon atom. Chem Commun 52:6561–6564CrossRef Junghans K, Rosenkranz M, Popov AA (2016) Sc3CH@C80: selective 13C enrichment of the central carbon atom. Chem Commun 52:6561–6564CrossRef
101.
go back to reference Popov AA, Chen N, Pinzón JR et al (2012) Redox-active scandium oxide cluster inside a fullerene cage: spectroscopic, voltammetric, electron spin resonance spectroelectrochemical, and extended density functional theory study of Sc4O2@C80 and its ion radicals. J Am Chem Soc 134(48):19607–19618CrossRef Popov AA, Chen N, Pinzón JR et al (2012) Redox-active scandium oxide cluster inside a fullerene cage: spectroscopic, voltammetric, electron spin resonance spectroelectrochemical, and extended density functional theory study of Sc4O2@C80 and its ion radicals. J Am Chem Soc 134(48):19607–19618CrossRef
102.
go back to reference Wang T-S, Feng L, Wu J-Y et al (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-I h . J Am Chem Soc 132(46):16362–16364CrossRef Wang T-S, Feng L, Wu J-Y et al (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-I h . J Am Chem Soc 132(46):16362–16364CrossRef
103.
go back to reference Feng Y, Wang T, Wu J et al (2014) Electron-spin excitation by implanting hydrogen into metallofullerene: the synthesis and spectroscopic characterization of Sc4C2H@I h -C80. Chem Commun 50(81):12166–12168CrossRef Feng Y, Wang T, Wu J et al (2014) Electron-spin excitation by implanting hydrogen into metallofullerene: the synthesis and spectroscopic characterization of Sc4C2H@I h -C80. Chem Commun 50(81):12166–12168CrossRef
104.
go back to reference Elliott B, Pykhova AD, Rivera J et al (2013) Spin density and cluster dynamics in Sc3N@C80 − upon [5,6] exohedral functionalization: an ESR and DFT study. J Phys Chem C 117(5):2344–2348CrossRef Elliott B, Pykhova AD, Rivera J et al (2013) Spin density and cluster dynamics in Sc3N@C80 upon [5,6] exohedral functionalization: an ESR and DFT study. J Phys Chem C 117(5):2344–2348CrossRef
105.
go back to reference Svitova AL, Ghiassi K, Schlesier C et al (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5:3568. doi:3510.1038/ncomms4568 Svitova AL, Ghiassi K, Schlesier C et al (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5:3568. doi:3510.1038/ncomms4568
106.
go back to reference Junghans K, Ghiassi KB, Samoylova NA et al (2016) Synthesis and isolation of the titanium-scandium endohedral fullerenes—Sc2TiC@I h -C80, Sc2TiC@D 5h -C80, and Sc2TiC2@I h -C80: metal size tuning of the TiIV/TiIII redox potentials. Chem-Eur J 22(37):13098–13107CrossRef Junghans K, Ghiassi KB, Samoylova NA et al (2016) Synthesis and isolation of the titanium-scandium endohedral fullerenes—Sc2TiC@I h -C80, Sc2TiC@D 5h -C80, and Sc2TiC2@I h -C80: metal size tuning of the TiIV/TiIII redox potentials. Chem-Eur J 22(37):13098–13107CrossRef
107.
go back to reference Junghans K, Schlesier C, Kostanyan A et al (2015) Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: selective synthesis of the single-molecule magnet Dy2TiC@C80 and its congener Dy2TiC2@C80. Angew Chem-Int Edit Engl 54(45):13411–13415CrossRef Junghans K, Schlesier C, Kostanyan A et al (2015) Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: selective synthesis of the single-molecule magnet Dy2TiC@C80 and its congener Dy2TiC2@C80. Angew Chem-Int Edit Engl 54(45):13411–13415CrossRef
108.
go back to reference Xu W, Feng L, Calvaresi M et al (2013) An experimentally observed trimetallofullerene Sm3@I h -C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135(11):4187–4190CrossRef Xu W, Feng L, Calvaresi M et al (2013) An experimentally observed trimetallofullerene Sm3@I h -C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135(11):4187–4190CrossRef
109.
go back to reference Wakahara T, Sakuraba A, Iiduka Y et al (2004) Chemical reactivity and redox property of Sc3@C82. Chem Phys Lett 398:553–556CrossRef Wakahara T, Sakuraba A, Iiduka Y et al (2004) Chemical reactivity and redox property of Sc3@C82. Chem Phys Lett 398:553–556CrossRef
110.
go back to reference Zhang L, Popov AA, Yang S et al (2010) An endohedral redox system in a fullerene cage: the Ce based mixed cluster fullerene Lu2CeN@C80. Phys Chem Chem Phys 12:7840–7847CrossRef Zhang L, Popov AA, Yang S et al (2010) An endohedral redox system in a fullerene cage: the Ce based mixed cluster fullerene Lu2CeN@C80. Phys Chem Chem Phys 12:7840–7847CrossRef
Metadata
Title
Electrochemistry and Frontier Molecular Orbitals of Endohedral Metallofullerenes
Author
Alexey A. Popov
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-47049-8_2

Premium Partners