Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Non-Chromatographic Separation of Endohedral Metallofullerenes by Utilizing Their Redox Properties

Authors : Nataliya Samoylova, Steven Stevenson

Published in: Endohedral Fullerenes: Electron Transfer and Spin

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Development of non-chromatographic separation for endohedral metallofullerenes has been put forward by many research groups with the goal of more straightforward and less expensive alternatives to HPLC. This chapter describes the progress in non-chromatographic separation approaches utilizing redox properties of EMFs, including electrolysis-assisted separation, separation with the use of redox-active solvents and redox reagents, or the use of complexation of fullerenes with Lewis acids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stibor A, Schefzyk H, Fortagh J (2010) Sublimation of the endohedral fullerene Er3N@C80. Phys Chem Chem Phys 12(40):13076–13081CrossRef Stibor A, Schefzyk H, Fortagh J (2010) Sublimation of the endohedral fullerene Er3N@C80. Phys Chem Chem Phys 12(40):13076–13081CrossRef
2.
go back to reference Chai Y, Guo T, Jin CM et al (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568CrossRef Chai Y, Guo T, Jin CM et al (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568CrossRef
3.
go back to reference Raebiger JW, Bolskar RD (2008) Improved production and separation processes for gadolinium metallofullerenes. J Phys Chem C 112(17):6605–6612CrossRef Raebiger JW, Bolskar RD (2008) Improved production and separation processes for gadolinium metallofullerenes. J Phys Chem C 112(17):6605–6612CrossRef
4.
go back to reference Diener MD, Smith CA, Veirs DK (1997) Anaerobic preparation and solvent-free separation of uranium endohedral metallofullerenes. Chem Mat 9(8):1773–1777CrossRef Diener MD, Smith CA, Veirs DK (1997) Anaerobic preparation and solvent-free separation of uranium endohedral metallofullerenes. Chem Mat 9(8):1773–1777CrossRef
5.
go back to reference Yeretzian C, Wiley JB, Holczer K et al (1993) Partial separation of fullerenes by gradient sublimation. J Phys Chem 97(39):10097–10101CrossRef Yeretzian C, Wiley JB, Holczer K et al (1993) Partial separation of fullerenes by gradient sublimation. J Phys Chem 97(39):10097–10101CrossRef
6.
go back to reference Ogawa T, Sugai T, Shinohara H (2000) Isolation and characterization of Er@C60. J Am Chem Soc 122(14):3538–3539CrossRef Ogawa T, Sugai T, Shinohara H (2000) Isolation and characterization of Er@C60. J Am Chem Soc 122(14):3538–3539CrossRef
7.
go back to reference Lu X, Bao L, Akasaka T et al (2014) Recent progresses in the chemistry of endohedral metallofullerenes. Chem Commun 50:14701–14715CrossRef Lu X, Bao L, Akasaka T et al (2014) Recent progresses in the chemistry of endohedral metallofullerenes. Chem Commun 50:14701–14715CrossRef
8.
go back to reference Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47(21):5942–5957CrossRef Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47(21):5942–5957CrossRef
9.
go back to reference Song FY, Zhang S, Bonifazi D et al (2005) Self-assembly of [60]fullerene-thiol derivatives on mercury surfaces. Langmuir 21(20):9246–9250CrossRef Song FY, Zhang S, Bonifazi D et al (2005) Self-assembly of [60]fullerene-thiol derivatives on mercury surfaces. Langmuir 21(20):9246–9250CrossRef
10.
go back to reference Angeli CD, Cai T, Duchamp JC et al (2008) Purification of trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-methylanthracene. Chem Mat 20(15):4993–4997CrossRef Angeli CD, Cai T, Duchamp JC et al (2008) Purification of trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-methylanthracene. Chem Mat 20(15):4993–4997CrossRef
11.
go back to reference Wu B, Wang T, Zhang Z et al (2013) An effective retro-cycloaddition of M3N@C80 (M = Sc, Lu, Ho) metallofulleropyrrolidines. Chem Commun 49(89):10489–10491CrossRef Wu B, Wang T, Zhang Z et al (2013) An effective retro-cycloaddition of M3N@C80 (M = Sc, Lu, Ho) metallofulleropyrrolidines. Chem Commun 49(89):10489–10491CrossRef
12.
go back to reference Stevenson S, Rose CB, Robson AA et al (2014) Effect of water and solvent selection on the SAFA purification times for metallic nitride fullerenes. Fullerenes, Nanotubes, Carbon Nanostruct 22(1–3):182–189CrossRef Stevenson S, Rose CB, Robson AA et al (2014) Effect of water and solvent selection on the SAFA purification times for metallic nitride fullerenes. Fullerenes, Nanotubes, Carbon Nanostruct 22(1–3):182–189CrossRef
13.
go back to reference Stevenson S, Rottinger KA, Field JS (2014) Fractionation of rare-earth metallofullerenes via reversible uptake and release from reactive silica. Dalton Trans 43(20):7435–7441CrossRef Stevenson S, Rottinger KA, Field JS (2014) Fractionation of rare-earth metallofullerenes via reversible uptake and release from reactive silica. Dalton Trans 43(20):7435–7441CrossRef
14.
go back to reference Stevenson S, Harich K, Yu H et al (2006) Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3N@C80 metallofullerenes. J Am Chem Soc 128(27):8829–8835CrossRef Stevenson S, Harich K, Yu H et al (2006) Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3N@C80 metallofullerenes. J Am Chem Soc 128(27):8829–8835CrossRef
15.
go back to reference Stevenson S, Mackey MA, Coumbe CE et al (2007) Rapid Removal of D 5h isomer using the “stir and filter approach” and isolation of large quantities of isomerically pure Sc3N@C80 metallic nitride fullerenes. J Am Chem Soc 129(19):6072–6073CrossRef Stevenson S, Mackey MA, Coumbe CE et al (2007) Rapid Removal of D 5h isomer using the “stir and filter approach” and isolation of large quantities of isomerically pure Sc3N@C80 metallic nitride fullerenes. J Am Chem Soc 129(19):6072–6073CrossRef
16.
go back to reference Diener MD, Alford JM (1998) Isolation and properties of small-bandgap fullerenes. Nature 393(6686):668–671CrossRef Diener MD, Alford JM (1998) Isolation and properties of small-bandgap fullerenes. Nature 393(6686):668–671CrossRef
17.
go back to reference Tsuchiya T, Wakahara T, Shirakura S et al (2004) Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem Mat 16(22):4343–4346CrossRef Tsuchiya T, Wakahara T, Shirakura S et al (2004) Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem Mat 16(22):4343–4346CrossRef
18.
go back to reference Tsuchiya T, Wakahara T, Lian YF et al (2006) Selective extraction and purification of endohedral metallofullerene from carbon soot. J Phys Chem B 110(45):22517–22520CrossRef Tsuchiya T, Wakahara T, Lian YF et al (2006) Selective extraction and purification of endohedral metallofullerene from carbon soot. J Phys Chem B 110(45):22517–22520CrossRef
19.
go back to reference Fuchs D, Rietschel H, Michel RH et al (1996) Extraction and chromatographic elution behavior of endohedral metallofullerenes: inferences regarding effective dipole moments. J Phys Chem 100(2):725–729CrossRef Fuchs D, Rietschel H, Michel RH et al (1996) Extraction and chromatographic elution behavior of endohedral metallofullerenes: inferences regarding effective dipole moments. J Phys Chem 100(2):725–729CrossRef
20.
go back to reference Laukhina EE, Bubnov VP, Estrin YI et al (1998) Novel proficient method for isolation of endometallofullerenes from fullerene-containing soots by two-step o-xylene-N. N-dimethylformamide extraction. J Mater Chem 8(4):893–895 Laukhina EE, Bubnov VP, Estrin YI et al (1998) Novel proficient method for isolation of endometallofullerenes from fullerene-containing soots by two-step o-xylene-N. N-dimethylformamide extraction. J Mater Chem 8(4):893–895
21.
go back to reference Ding JQ, Yang SH (1996) Efficient N, N-dimethylformamide extraction of endohedral metallofullerenes for HPLC purification. Chem Mat 8(12):2824–2827CrossRef Ding JQ, Yang SH (1996) Efficient N, N-dimethylformamide extraction of endohedral metallofullerenes for HPLC purification. Chem Mat 8(12):2824–2827CrossRef
22.
go back to reference Yamamoto K, Funasaka H, Takahashi T et al (1994) Isolation of an ESR-active metallofullerene of La@C82. J Phys Chem 98(8):2008–2011CrossRef Yamamoto K, Funasaka H, Takahashi T et al (1994) Isolation of an ESR-active metallofullerene of La@C82. J Phys Chem 98(8):2008–2011CrossRef
23.
go back to reference Kubozono Y, Ohta T, Hayashibara T et al (1995) Preparation and extraction of Ca@C60. Chem Lett 6:457–458CrossRef Kubozono Y, Ohta T, Hayashibara T et al (1995) Preparation and extraction of Ca@C60. Chem Lett 6:457–458CrossRef
24.
go back to reference Xiao J, Savina MR, Martin GB et al (1994) Efficient HPLC purification of endohedral metallofullerenes on a porphyrin-silica stationary phase. J Am Chem Soc 116(20):9341–9342CrossRef Xiao J, Savina MR, Martin GB et al (1994) Efficient HPLC purification of endohedral metallofullerenes on a porphyrin-silica stationary phase. J Am Chem Soc 116(20):9341–9342CrossRef
25.
go back to reference Anderson MR, Dorn HC, Stevenson SA (2000) Making connections between metallofullerenes and fullerenes: electrochemical investigations. Carbon 38(11–12):1663–1670CrossRef Anderson MR, Dorn HC, Stevenson SA (2000) Making connections between metallofullerenes and fullerenes: electrochemical investigations. Carbon 38(11–12):1663–1670CrossRef
26.
go back to reference Liu BB, Zou GT, Yang HB et al (1997) Synthesis, extraction and electronic structure of Ce@C2n . J Phys Chem Solids 58(11):1873–1876CrossRef Liu BB, Zou GT, Yang HB et al (1997) Synthesis, extraction and electronic structure of Ce@C2n . J Phys Chem Solids 58(11):1873–1876CrossRef
27.
go back to reference Sun DY, Liu ZY, Guo XH et al (1997) High-yield extraction of endohedral rare-earth fullerenes. J Phys Chem B 101(20):3927–3930CrossRef Sun DY, Liu ZY, Guo XH et al (1997) High-yield extraction of endohedral rare-earth fullerenes. J Phys Chem B 101(20):3927–3930CrossRef
28.
go back to reference Kubozono Y, Maeda H, Takabayashi Y et al (1996) Extractions of Y@C60, Ba@C60, La@C60, Ce@C60, Pr@C60, Nd@C60 and Gd@C60 with aniline. J Am Chem Soc 118(29):6998–6999CrossRef Kubozono Y, Maeda H, Takabayashi Y et al (1996) Extractions of Y@C60, Ba@C60, La@C60, Ce@C60, Pr@C60, Nd@C60 and Gd@C60 with aniline. J Am Chem Soc 118(29):6998–6999CrossRef
29.
go back to reference Lian YF, Shi ZJ, Zhou XH et al (2004) Different extraction behaviors between divalent and trivalent endohedral metallofullerenes. Chem Mat 16(9):1704–1714CrossRef Lian YF, Shi ZJ, Zhou XH et al (2004) Different extraction behaviors between divalent and trivalent endohedral metallofullerenes. Chem Mat 16(9):1704–1714CrossRef
30.
go back to reference Solodovnikov SP, Tumanskii BL, Bashilov VV et al (2001) Spectral study of reactions of La@C-82 and Y@C-82 with amino-containing solvents. Russ Chem Bull 50(11):2242–2244CrossRef Solodovnikov SP, Tumanskii BL, Bashilov VV et al (2001) Spectral study of reactions of La@C-82 and Y@C-82 with amino-containing solvents. Russ Chem Bull 50(11):2242–2244CrossRef
31.
go back to reference Kareev IE, Bubnov VP, Laukhina EE et al (2004) Experimental evidence in support of the formation of anionic endohedral metallofullerenes during their extraction with N. N-dimethylformamide. Fuller Nanotub Carbon Nanostruct 12(1–2):65–69 Kareev IE, Bubnov VP, Laukhina EE et al (2004) Experimental evidence in support of the formation of anionic endohedral metallofullerenes during their extraction with N. N-dimethylformamide. Fuller Nanotub Carbon Nanostruct 12(1–2):65–69
32.
go back to reference Bolskar RD, Alford JM (2003) Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem Commun 11:1292–1293CrossRef Bolskar RD, Alford JM (2003) Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem Commun 11:1292–1293CrossRef
33.
go back to reference Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(8):678–683CrossRef Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(8):678–683CrossRef
34.
go back to reference Okada H, Komuro T, Sakai T et al (2012) Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6 −]). RSC Adv 2(28):10624–10631CrossRef Okada H, Komuro T, Sakai T et al (2012) Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6 ]). RSC Adv 2(28):10624–10631CrossRef
35.
go back to reference Elliott B, Yu L, Echegoyen L (2005) A Simple Isomeric Separation of D 5h and I h Sc3N@C80 by Selective Chemical Oxidation. J Am Chem Soc 127(31):10885–10888CrossRef Elliott B, Yu L, Echegoyen L (2005) A Simple Isomeric Separation of D 5h and I h Sc3N@C80 by Selective Chemical Oxidation. J Am Chem Soc 127(31):10885–10888CrossRef
36.
go back to reference Cerón MR, Li F-F, Echegoyen L (2013) An efficient method to separate Sc3N@C80 I h and D 5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium [Fe(COCH3C5H4)Cp]+. Chem-Eur J 19(23):7410–7415CrossRef Cerón MR, Li F-F, Echegoyen L (2013) An efficient method to separate Sc3N@C80 I h and D 5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium [Fe(COCH3C5H4)Cp]+. Chem-Eur J 19(23):7410–7415CrossRef
37.
go back to reference Olah GA, Bucsi I, Lambert C et al (1991) Considered polycarbon supercage chemistry. 3. Polyarenefullerenes, C60(H–Ar)N, obtained by acid-catalyzed fullerenation of aromatics. J Am Chem Soc 113(24):9387–9388CrossRef Olah GA, Bucsi I, Lambert C et al (1991) Considered polycarbon supercage chemistry. 3. Polyarenefullerenes, C60(H–Ar)N, obtained by acid-catalyzed fullerenation of aromatics. J Am Chem Soc 113(24):9387–9388CrossRef
38.
go back to reference Olah GA, Bucsi I, Aniszfeld R et al (1992) Chemical-reactivity and functionalization of C60 and C70 fullerenes. Carbon 30(8):1203–1211CrossRef Olah GA, Bucsi I, Aniszfeld R et al (1992) Chemical-reactivity and functionalization of C60 and C70 fullerenes. Carbon 30(8):1203–1211CrossRef
39.
go back to reference Olah GA, Bucsi I, Ha DS et al (1997) Friedel-crafts reactions of buckminsterfullerene. Fullerene Sci Technol 5(2):389–405CrossRef Olah GA, Bucsi I, Ha DS et al (1997) Friedel-crafts reactions of buckminsterfullerene. Fullerene Sci Technol 5(2):389–405CrossRef
40.
go back to reference Bucsi I, Aniszfeld R, Shamma T et al (1994) Convenient separation of high-purity C60 from crude fullerene extract by selective complexation with AlCl3. Proc Natl Acad Sci U S A 91(19):9019–9021CrossRef Bucsi I, Aniszfeld R, Shamma T et al (1994) Convenient separation of high-purity C60 from crude fullerene extract by selective complexation with AlCl3. Proc Natl Acad Sci U S A 91(19):9019–9021CrossRef
41.
go back to reference Stevenson S, Mackey MA, Pickens JE et al (2009) Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with lewis acids and use as an effective purification method. Inorg Chem 48(24):11685–11690CrossRef Stevenson S, Mackey MA, Pickens JE et al (2009) Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with lewis acids and use as an effective purification method. Inorg Chem 48(24):11685–11690CrossRef
42.
go back to reference Akiyama K, Hamano T, Nakanishi Y et al (2012) Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl4 lewis acid. J Am Chem Soc 134(23):9762–9767CrossRef Akiyama K, Hamano T, Nakanishi Y et al (2012) Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl4 lewis acid. J Am Chem Soc 134(23):9762–9767CrossRef
43.
go back to reference Wang Z, Nakanishi Y, Noda S et al (2012) The origin and mechanism of non-HPLC purification of metallofullerenes with TiCl4. J Phys Chem C 116(48):25563–25567CrossRef Wang Z, Nakanishi Y, Noda S et al (2012) The origin and mechanism of non-HPLC purification of metallofullerenes with TiCl4. J Phys Chem C 116(48):25563–25567CrossRef
44.
go back to reference Wang Z, Nakanishi Y, Noda S et al (2013) Missing small-bandgap metallofullerenes: their isolation and electronic properties. Angew Chem-Int Edit Engl 52(45):11770–11774CrossRef Wang Z, Nakanishi Y, Noda S et al (2013) Missing small-bandgap metallofullerenes: their isolation and electronic properties. Angew Chem-Int Edit Engl 52(45):11770–11774CrossRef
45.
go back to reference Stevenson S, Rottinger KA (2013) CuCl2 for the isolation of a broad array of endohedral fullerenes containing metallic, metallic carbide, metallic nitride, and metallic oxide clusters, and separation of their structural isomers. Inorg Chem 52(16):9606–9612CrossRef Stevenson S, Rottinger KA (2013) CuCl2 for the isolation of a broad array of endohedral fullerenes containing metallic, metallic carbide, metallic nitride, and metallic oxide clusters, and separation of their structural isomers. Inorg Chem 52(16):9606–9612CrossRef
46.
go back to reference Cai T, Xu L, Shu C et al (2008) Selective formation of a symmetric Sc3N@C78 bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J Am Chem Soc 130(7):2136–2137CrossRef Cai T, Xu L, Shu C et al (2008) Selective formation of a symmetric Sc3N@C78 bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J Am Chem Soc 130(7):2136–2137CrossRef
47.
go back to reference Yang SF, Rapta P, Dunsch L (2007) The spin state of a charged non-IPR fullerene: the stable radical cation of Sc3N@C68. Chem Commun 2:189–191CrossRef Yang SF, Rapta P, Dunsch L (2007) The spin state of a charged non-IPR fullerene: the stable radical cation of Sc3N@C68. Chem Commun 2:189–191CrossRef
48.
go back to reference Cai T, Xu LS, Anderson MR et al (2006) Structure and enhanced reactivity rates of the D 5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589CrossRef Cai T, Xu LS, Anderson MR et al (2006) Structure and enhanced reactivity rates of the D 5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589CrossRef
49.
go back to reference Krause M, Dunsch L (2004) Isolation and characterisation of two Sc3N@C80 isomers. Chem Phys Chem 5(9):1445–1449CrossRef Krause M, Dunsch L (2004) Isolation and characterisation of two Sc3N@C80 isomers. Chem Phys Chem 5(9):1445–1449CrossRef
50.
go back to reference Anderson MR, Dorn HC, Stevenson S et al (1997) The voltammetry of Sc3@C82. J Am Chem Soc 119(2):437–438CrossRef Anderson MR, Dorn HC, Stevenson S et al (1997) The voltammetry of Sc3@C82. J Am Chem Soc 119(2):437–438CrossRef
51.
go back to reference Wakahara T, Sakuraba A, Iiduka Y et al (2004) Chemical reactivity and redox property of Sc3@C82. Chem Phys Lett 398:553–556CrossRef Wakahara T, Sakuraba A, Iiduka Y et al (2004) Chemical reactivity and redox property of Sc3@C82. Chem Phys Lett 398:553–556CrossRef
52.
go back to reference Ghiassi KB, Olmstead M, Balch AL (2014) Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents. Dalton Trans 43:7346–7358CrossRef Ghiassi KB, Olmstead M, Balch AL (2014) Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents. Dalton Trans 43:7346–7358CrossRef
53.
go back to reference Zhang JF, Fatouros PP, Shu CY et al (2010) High relaxivity trimetallic nitride (Gd3N) metallofullerene MRI contrast agents with optimized functionality. Bioconjugate Chem 21(4):610–615CrossRef Zhang JF, Fatouros PP, Shu CY et al (2010) High relaxivity trimetallic nitride (Gd3N) metallofullerene MRI contrast agents with optimized functionality. Bioconjugate Chem 21(4):610–615CrossRef
54.
go back to reference Zhang J, Ye Y, Chen Y et al (2014) Gd3N@C84(OH) x : a new egg-shaped metallofullerene magnetic resonance imaging contrast agent. J Am Chem Soc 136(6):2630–2636CrossRef Zhang J, Ye Y, Chen Y et al (2014) Gd3N@C84(OH) x : a new egg-shaped metallofullerene magnetic resonance imaging contrast agent. J Am Chem Soc 136(6):2630–2636CrossRef
55.
go back to reference Shu CY, Gan LH, Wang CR et al (2006) Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon 44(3):496–500CrossRef Shu CY, Gan LH, Wang CR et al (2006) Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon 44(3):496–500CrossRef
56.
go back to reference Toth E, Bolskar RD, Borel A et al (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 127(2):799–805CrossRef Toth E, Bolskar RD, Borel A et al (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 127(2):799–805CrossRef
57.
go back to reference Sitharaman B, Bolskar RD, Rusakova I et al (2004) Gd@C60[C(COOH)2]10 and Gd@C60(OH)x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 4(12):2373–2378CrossRef Sitharaman B, Bolskar RD, Rusakova I et al (2004) Gd@C60[C(COOH)2]10 and Gd@C60(OH)x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 4(12):2373–2378CrossRef
58.
go back to reference Kato H, Kanazawa Y, Okumura M et al (2003) Lanthanoid endohedral metallofullerenols for MRI contrast agents. J Am Chem Soc 125(14):4391–4397CrossRef Kato H, Kanazawa Y, Okumura M et al (2003) Lanthanoid endohedral metallofullerenols for MRI contrast agents. J Am Chem Soc 125(14):4391–4397CrossRef
59.
go back to reference Bolskar RD, Benedetto AF, Husebo LO et al (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc 125(18):5471–5478CrossRef Bolskar RD, Benedetto AF, Husebo LO et al (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc 125(18):5471–5478CrossRef
60.
go back to reference Fatouros PP, Shultz MD (2013) Metallofullerenes: a new class of MRI agents and more? Nanomedicine 8(11):1853–1864CrossRef Fatouros PP, Shultz MD (2013) Metallofullerenes: a new class of MRI agents and more? Nanomedicine 8(11):1853–1864CrossRef
61.
go back to reference Okumura M, Mikawa M, Yokawa T et al (2002) Evaluation of water-soluble metallofullerenes as MRI contrast agents. Academic Radiology 9:S495–S497CrossRef Okumura M, Mikawa M, Yokawa T et al (2002) Evaluation of water-soluble metallofullerenes as MRI contrast agents. Academic Radiology 9:S495–S497CrossRef
62.
go back to reference Mikawa M, Kato H, Okumura M et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem 12(4):510–514CrossRef Mikawa M, Kato H, Okumura M et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem 12(4):510–514CrossRef
63.
go back to reference Stevenson S, Rottinger KA, Fahim M et al (2014) Tuning the selectivity of Gd3N cluster endohedral metallofullerene reactions with lewis acids. Inorg Chem 53(24):12939–12946CrossRef Stevenson S, Rottinger KA, Fahim M et al (2014) Tuning the selectivity of Gd3N cluster endohedral metallofullerene reactions with lewis acids. Inorg Chem 53(24):12939–12946CrossRef
64.
go back to reference Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829CrossRef Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829CrossRef
65.
go back to reference Chaur MN, Athans AJ, Echegoyen L (2008) Metallic nitride endohedral fullerenes: synthesis and electrochemical properties. Tetrahedron 64(50):11387–11393CrossRef Chaur MN, Athans AJ, Echegoyen L (2008) Metallic nitride endohedral fullerenes: synthesis and electrochemical properties. Tetrahedron 64(50):11387–11393CrossRef
66.
go back to reference Stevenson S, Thompson HR, Arvola KD et al. (2015) Isolation of CeLu2N@I h -C80 through a non-chromatographic, two-step chemical process and crystallographic characterization of the pyramidalized CeLu2N within the icosahedral cage. Chemistry (Weinheim an der Bergstrasse, Germany) 21 (29):10362–10368 Stevenson S, Thompson HR, Arvola KD et al. (2015) Isolation of CeLu2N@I h -C80 through a non-chromatographic, two-step chemical process and crystallographic characterization of the pyramidalized CeLu2N within the icosahedral cage. Chemistry (Weinheim an der Bergstrasse, Germany) 21 (29):10362–10368
67.
go back to reference Stevenson S, Arvola KD, Fahim M et al (2016) Isolation and crystallographic characterization of Gd3N@D 2(35)-C88 through non-chromatographic methods. Inorg Chem 55(1):62–67CrossRef Stevenson S, Arvola KD, Fahim M et al (2016) Isolation and crystallographic characterization of Gd3N@D 2(35)-C88 through non-chromatographic methods. Inorg Chem 55(1):62–67CrossRef
Metadata
Title
Non-Chromatographic Separation of Endohedral Metallofullerenes by Utilizing Their Redox Properties
Authors
Nataliya Samoylova
Steven Stevenson
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-47049-8_3

Premium Partners