Skip to main content
Top
Published in: Glass and Ceramics 3-4/2020

09-07-2020

Synthesis and Properties of Silicon-Carbide-Modified Porous Glass Composite

Authors: V. I. Semenova, V. A. Kutugin, O. V. Kaz’mina

Published in: Glass and Ceramics | Issue 3-4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The synthesis and properties of a porous glass composite obtained, based on cullet powder using aluminum powder and liquid glass, at temperatures not exceeding 100°C are discussed. It is shown that silicon carbide or a mixture of silicon carbide with gallium arsenide, which is a product of grinding in the semiconductor industry, can be used as a composition modifier. It is shown that porous glass composite with density not exceeding 600 kg/m3 and strength in compression not less than 1.7 MPa can be obtained by introducing 32% waste into the composition. The introduction of modifiers promotes better foaming and positively impacts the structural quality factor of the material. The results of these studies expand the range of application and the raw material base for the production of porous glass composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. I. Minko, O. V. Puchka, and E. I. Evtushenko, “Foam glass — a modern effective inorganic heat-insulating material,” Fundam. Issled., No. 6, 849 – 854 (2013). N. I. Minko, O. V. Puchka, and E. I. Evtushenko, “Foam glass — a modern effective inorganic heat-insulating material,” Fundam. Issled., No. 6, 849 – 854 (2013).
2.
go back to reference I. M. Tereshchenko, O. B. Dormeshkin, A. P. Kravchuk, and B. P. Zhikh, “Status and prospects of development of production of glassy foamed heat-insulation materials,” Steklo Keram., No. 6, 29 – 32 (2017); I. M. Tereshchenko, O. B. Dormeshkin, A. P. Kravchuk, and B. P. Zhikh, “Status and prospects of development of production of glassy foamed heat-insulation materials,” Glass Ceram., 74(5 – 6), 216 – 219 (2017). I. M. Tereshchenko, O. B. Dormeshkin, A. P. Kravchuk, and B. P. Zhikh, “Status and prospects of development of production of glassy foamed heat-insulation materials,” Steklo Keram., No. 6, 29 – 32 (2017); I. M. Tereshchenko, O. B. Dormeshkin, A. P. Kravchuk, and B. P. Zhikh, “Status and prospects of development of production of glassy foamed heat-insulation materials,” Glass Ceram., 74(5 – 6), 216 – 219 (2017).
3.
go back to reference V. I. Suslyaev, O. V. Kazmina, B. S. Semukhin, et al., “Electrophysical characteristics of a foam glass crystal material,” Russ. Phys. J., 56(9), 990 – 996 (2014).CrossRef V. I. Suslyaev, O. V. Kazmina, B. S. Semukhin, et al., “Electrophysical characteristics of a foam glass crystal material,” Russ. Phys. J., 56(9), 990 – 996 (2014).CrossRef
4.
go back to reference A. S. Apkar’yan, T. A. Gubaidulina, and O. V. Kaminskaya, “Foam-glass ceramic based filtering material for removing iron and manganese from drinking water,” Steklo Keram., No. 11, 41 – 46 (2014); A. S. Apkar’yan, T. A. Gubaidulina, and O. V. Kaminskaya, “Foam-glass ceramic based filtering material for removing iron and manganese from drinking water,” Glass Ceram., 71(11 – 12), 413 – 417 (2014). A. S. Apkar’yan, T. A. Gubaidulina, and O. V. Kaminskaya, “Foam-glass ceramic based filtering material for removing iron and manganese from drinking water,” Steklo Keram., No. 11, 41 – 46 (2014); A. S. Apkar’yan, T. A. Gubaidulina, and O. V. Kaminskaya, “Foam-glass ceramic based filtering material for removing iron and manganese from drinking water,” Glass Ceram., 71(11 – 12), 413 – 417 (2014).
5.
go back to reference J. Lacroix, J. Lao, and E. Jallot, “Simple synthesis of mesostructured bioactive glass foams and their bioactivity study by micro-PIXE method,” J. Phys. Chem., 117(44), 23066 – 23071 (2013). J. Lacroix, J. Lao, and E. Jallot, “Simple synthesis of mesostructured bioactive glass foams and their bioactivity study by micro-PIXE method,” J. Phys. Chem., 117(44), 23066 – 23071 (2013).
6.
go back to reference O. V. Kazmina, “Effect of the component composition and oxidation — reduction characteristics of mixes on foaming of pyroplastic silicate pastes,” Steklo Keram., No. 4, 13 – 17 (2010); O. V. Kazmina, “Effect of the component composition and oxidation — reduction characteristics of mixes on foaming of pyroplastic silicate pastes,” Glass Ceram., 67(3 – 4), 109 – 113 (2010). O. V. Kazmina, “Effect of the component composition and oxidation — reduction characteristics of mixes on foaming of pyroplastic silicate pastes,” Steklo Keram., No. 4, 13 – 17 (2010); O. V. Kazmina, “Effect of the component composition and oxidation — reduction characteristics of mixes on foaming of pyroplastic silicate pastes,” Glass Ceram., 67(3 – 4), 109 – 113 (2010).
7.
go back to reference L. K. Kazantseva, “Particulars of foam glass manufacture from zeolite-alkali batch,” Steklo Keram., No. 8, 3 – 7 (2013); L. K. Kazantseva, “Particulars of foam glass manufacture from zeolite-alkali batch,” Glass Ceram., 70(7 – 8), 277 – 288 (2013). L. K. Kazantseva, “Particulars of foam glass manufacture from zeolite-alkali batch,” Steklo Keram., No. 8, 3 – 7 (2013); L. K. Kazantseva, “Particulars of foam glass manufacture from zeolite-alkali batch,” Glass Ceram., 70(7 – 8), 277 – 288 (2013).
8.
go back to reference V. I. Vereshchagin and S. N. Sokolova, “Granulated foam glass-ceramic material from zeolitic rocks,” Constr. Build. Mater., No. 22, 999 – 1003 (2008). V. I. Vereshchagin and S. N. Sokolova, “Granulated foam glass-ceramic material from zeolitic rocks,” Constr. Build. Mater., No. 22, 999 – 1003 (2008).
9.
go back to reference V. E. Manevich, R. K. Subbotin, E. A. Nikiforov, et al. “Diatomite, silica material for glass industry,” Steklo Keram., No. 5, 34 – 39 (2012); V. E. Manevich, R. K. Subbotin, E. A. Nikiforov, et al. “Diatomite, silica material for glass industry,” Glass Ceram., 69(5 – 6), 168 – 172 (2012). V. E. Manevich, R. K. Subbotin, E. A. Nikiforov, et al. “Diatomite, silica material for glass industry,” Steklo Keram., No. 5, 34 – 39 (2012); V. E. Manevich, R. K. Subbotin, E. A. Nikiforov, et al. “Diatomite, silica material for glass industry,” Glass Ceram., 69(5 – 6), 168 – 172 (2012).
10.
go back to reference H. R. Fernandes, D. U. Tulyaganov, and J. M. F. Ferreira, “Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents,” Ceram. Int., 35, 229 – 235 (2009).CrossRef H. R. Fernandes, D. U. Tulyaganov, and J. M. F. Ferreira, “Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents,” Ceram. Int., 35, 229 – 235 (2009).CrossRef
11.
go back to reference A. A. Ketov and A. V. Tolmachev, “Foam glass—technological realities and the market,” Stroit. Mater., No. 11, 17 – 31 (2015). A. A. Ketov and A. V. Tolmachev, “Foam glass—technological realities and the market,” Stroit. Mater., No. 11, 17 – 31 (2015).
12.
go back to reference A. A. Zhimalov, L. N. Bondareva, Yu. G. Igithanyan, and Yu. G. Ivashchenko, “Use of amorphous siliceous rocks — opokas to obtain foam glass with low foaming temperature,” Steklo Keram., No. 1, 14 – 16 (2017); A. A. Zhimalov, L. N. Bondareva, Yu. G. Igithanyan, and Yu. G. Ivashchenko, “Use of amorphous siliceous rocks — opokas to obtain foam glass with low foaming temperature,” Glass Ceram., 74(1 – 2), 13 – 15 (2017). A. A. Zhimalov, L. N. Bondareva, Yu. G. Igithanyan, and Yu. G. Ivashchenko, “Use of amorphous siliceous rocks — opokas to obtain foam glass with low foaming temperature,” Steklo Keram., No. 1, 14 – 16 (2017); A. A. Zhimalov, L. N. Bondareva, Yu. G. Igithanyan, and Yu. G. Ivashchenko, “Use of amorphous siliceous rocks — opokas to obtain foam glass with low foaming temperature,” Glass Ceram., 74(1 – 2), 13 – 15 (2017).
13.
go back to reference A. C. Bento, S. A. Pianaro, S. M. Tebcherani, et al., “Glass foam of macroporosity using glass waste and sodium hydroxide as the foaming agent,” Ceram. Int., 39(3), 2423 – 2430 (2013).CrossRef A. C. Bento, S. A. Pianaro, S. M. Tebcherani, et al., “Glass foam of macroporosity using glass waste and sodium hydroxide as the foaming agent,” Ceram. Int., 39(3), 2423 – 2430 (2013).CrossRef
14.
go back to reference G. Ya. Musafirov, E. V. Musafirov, and M. V. Lyshchik, “Block foam glass based on cullet, dolomite flour and liquid glass,” Tekh. Tekhnol. Silikatov, 24(1), 7 – 11 (2017). G. Ya. Musafirov, E. V. Musafirov, and M. V. Lyshchik, “Block foam glass based on cullet, dolomite flour and liquid glass,” Tekh. Tekhnol. Silikatov, 24(1), 7 – 11 (2017).
15.
go back to reference N. P. Sigachev, N. A. Konovalova, and E. V. Nepomnyashchikh, “Low-temperature foaming of chemically and mechanochemically modified zeolite-containing rocks to obtain heat-insulating materials,” Vest. Zabaikal. Gos. Univ., No. 6(109), 12 – 20 (2014). N. P. Sigachev, N. A. Konovalova, and E. V. Nepomnyashchikh, “Low-temperature foaming of chemically and mechanochemically modified zeolite-containing rocks to obtain heat-insulating materials,” Vest. Zabaikal. Gos. Univ., No. 6(109), 12 – 20 (2014).
16.
go back to reference N. E. Stakhovskaya, A. I. Chervony, and E. Ya. Podluzsky, A Method of manufacturing Block Foam Glass, Pat. 17746 Belarus [in Russian], publ. 12/30/2013. N. E. Stakhovskaya, A. I. Chervony, and E. Ya. Podluzsky, A Method of manufacturing Block Foam Glass, Pat. 17746 Belarus [in Russian], publ. 12/30/2013.
17.
go back to reference L. E. Gurevich, A. V. Kulikov, and B. A. Nikolaichev, Material for the Absorption of Electromagnetic Waves and a Method of Its Manufacture, Pat. 2375793 RF [in Russian], app. 10/20/08; publ. 10/10/09. L. E. Gurevich, A. V. Kulikov, and B. A. Nikolaichev, Material for the Absorption of Electromagnetic Waves and a Method of Its Manufacture, Pat. 2375793 RF [in Russian], app. 10/20/08; publ. 10/10/09.
18.
go back to reference A. V. Byakova, V. P. Krasovskii, A. O. Dudnik, et al., “On the role of wettability and distribution of solid particles in the stabilization of foamed aluminum melts,” Adgeziya Raspl. Paika Mater., No. 42, 5 – 22 (2009). A. V. Byakova, V. P. Krasovskii, A. O. Dudnik, et al., “On the role of wettability and distribution of solid particles in the stabilization of foamed aluminum melts,” Adgeziya Raspl. Paika Mater., No. 42, 5 – 22 (2009).
19.
go back to reference G. V. Galyavsky, E. V. Protopopov, and M. V. Temlyard, “Use of industrial metallurgical waste in silicon carbide technology,” Vest. Kuzbas. Gos. Tekhn. Univ., No. 4 (104), 103 – 110 (2014). G. V. Galyavsky, E. V. Protopopov, and M. V. Temlyard, “Use of industrial metallurgical waste in silicon carbide technology,” Vest. Kuzbas. Gos. Tekhn. Univ., No. 4 (104), 103 – 110 (2014).
20.
go back to reference Sh. Farhan, R. Wang, and K. Li, “Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires,” Ceram. Int., 42(9), 11330 – 11340 (2016).CrossRef Sh. Farhan, R. Wang, and K. Li, “Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires,” Ceram. Int., 42(9), 11330 – 11340 (2016).CrossRef
21.
go back to reference Z. Yi, W. Zhou, and Z. Boliang, “The electromagnetic interference shielding effectiveness of high aspect-ratio SiC nanofibers,” RSC Advances, 5(113), 93499 – 93506 (2015).CrossRef Z. Yi, W. Zhou, and Z. Boliang, “The electromagnetic interference shielding effectiveness of high aspect-ratio SiC nanofibers,” RSC Advances, 5(113), 93499 – 93506 (2015).CrossRef
22.
go back to reference A. F. Latypova and Yu. E. Kalinin, “Analysis of promising radar- absorbing materials,” Vest. Voronezh. Tekhn. Univ., 8(6), 70 – 76 (2012). A. F. Latypova and Yu. E. Kalinin, “Analysis of promising radar- absorbing materials,” Vest. Voronezh. Tekhn. Univ., 8(6), 70 – 76 (2012).
23.
go back to reference N. I. Malyavskii, “Alkali-silicate heaters. Properties and chemical basis of production,” Ross. Khim. Zh., 47(4), 39 – 45 (2003). N. I. Malyavskii, “Alkali-silicate heaters. Properties and chemical basis of production,” Ross. Khim. Zh., 47(4), 39 – 45 (2003).
Metadata
Title
Synthesis and Properties of Silicon-Carbide-Modified Porous Glass Composite
Authors
V. I. Semenova
V. A. Kutugin
O. V. Kaz’mina
Publication date
09-07-2020
Publisher
Springer US
Published in
Glass and Ceramics / Issue 3-4/2020
Print ISSN: 0361-7610
Electronic ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-020-00255-y

Other articles of this Issue 3-4/2020

Glass and Ceramics 3-4/2020 Go to the issue

Premium Partners