Skip to main content
Top
Published in: Journal of Electronic Materials 9/2021

16-06-2021 | Original Research Article

Synthesis of High Purity Bismuth Telluride (Bi2Te3) Nanostructures by Co-precipitation Process and Annealing Under Hydrazine Vapor: Structural and Thermoelectric Studies

Authors: Zohre Jafari Vafa, Mohammad Mehdi Bagheri Mohagheghi

Published in: Journal of Electronic Materials | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-purity bismuth telluride (Bi2Te3) nanostructures have been synthesized by a chemical reduction method with two processes: (1) co-precipitation by NaBH4 and (2) annealing under hydrazine vapor and nitrogen gas atmosphere at T = 300°C. Based on the use of nitric acid (HNO3) in the preparation of precursor solutions from primary materials, two syntheses were designed to prepare the Bi2Te3 nanostructures. Then, the structural, optical, and thermoelectric properties and the surface morphology of the obtained nanoparticles from the two syntheses were investigated. The X-ray diffraction analysis results revealed the formation of Bi2Te3 nanostructures in both syntheses. The values of the crystallite size and micro-strains of the Bi2Te3 nanostructure were obtained from the average Williamson–Hall (Langford) analysis and Scherrer methods. Field-emission scanning electron microscopy micrographs of the Bi2Te3 nanostructures showed hexagonal nanocrystals with different nano-sizes. Energy dispersive x-ray spectroscopy analysis confirmed the formation of the Bi2Te3 compound and the high purity of the synthesized nanostructures. The Bi2Te3 nanostructure produced in the second synthesis (HNO3-Bi&Te) had a higher Seebeck coefficient (56.3 \(\mu \mathrm{V}/\mathrm{K}\)) and lower resistance (9 \(\mathrm{k}{\Omega }\)). The amount of ZT in this optimal synthesis (HNO3-Bi&Te) increased by 6.5 times. The results of the Seebeck experiment mostly showed p-type conductivity for the two syntheses. Fourier-transform infrared spectroscopy analysis showed very low absorption of the NH2 group on the Bi2Te3 nanostructured surface. This study showed that annealing in the presence of hydrazine vapor has major influences on the formation of the bismuth telluride binary phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference K. Oshima, Y. Yanagawa, H. Asano, Y. Shiraishi, and N. Toshima, Synth. Met. 225, 81 (2017).CrossRef K. Oshima, Y. Yanagawa, H. Asano, Y. Shiraishi, and N. Toshima, Synth. Met. 225, 81 (2017).CrossRef
5.
go back to reference H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, and M. Nil, Renew. Sustain. Energy. Rev. 82, 4159 (2018).CrossRef H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, and M. Nil, Renew. Sustain. Energy. Rev. 82, 4159 (2018).CrossRef
6.
go back to reference M. Zakeri, M. Allahkarami, G. Kavei, A. Khanmohammadian, and M.R. Rahimipour, J. Mater. Process. Technol. 209, 96 (2009).CrossRef M. Zakeri, M. Allahkarami, G. Kavei, A. Khanmohammadian, and M.R. Rahimipour, J. Mater. Process. Technol. 209, 96 (2009).CrossRef
7.
go back to reference M.M. Nassary, H.T. Shaban, and M.S. El-Sadek, J. Optoelectron. Adv. Mater. 11, 180 (2009). M.M. Nassary, H.T. Shaban, and M.S. El-Sadek, J. Optoelectron. Adv. Mater. 11, 180 (2009).
8.
go back to reference S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, Nanotechnology 24, 5702 (2013). S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, Nanotechnology 24, 5702 (2013).
9.
go back to reference X. Chen, L. Liu, Y. Dong, L. Wang, L. Chen, and W. Jiang, Prog. Nat. Sci. Mater. Int. 22, 201 (2012).CrossRef X. Chen, L. Liu, Y. Dong, L. Wang, L. Chen, and W. Jiang, Prog. Nat. Sci. Mater. Int. 22, 201 (2012).CrossRef
10.
go back to reference M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).CrossRef M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).CrossRef
12.
go back to reference S. Gupta, S. Neeleshwar, V. Kumar, and Y.Y. Chen, Adv. Mater. Lett. 3, 50 (2012).CrossRef S. Gupta, S. Neeleshwar, V. Kumar, and Y.Y. Chen, Adv. Mater. Lett. 3, 50 (2012).CrossRef
13.
14.
go back to reference Y. Li, Q. Zhao, Y.G. Wang, and K. Bi, Mater. Sci. Semicond. Process. 14, 219 (2011).CrossRef Y. Li, Q. Zhao, Y.G. Wang, and K. Bi, Mater. Sci. Semicond. Process. 14, 219 (2011).CrossRef
15.
go back to reference K.T. Kim, H.M. Lee, D.W. Kim, K.J. Kim, G.H. Ha, and G.G. Lee, J. Korean Phys. Soc. 57, 1037 (2010).CrossRef K.T. Kim, H.M. Lee, D.W. Kim, K.J. Kim, G.H. Ha, and G.G. Lee, J. Korean Phys. Soc. 57, 1037 (2010).CrossRef
17.
go back to reference H.J. Kim, M.K. Han, H.Y. Kim, W. Lee, and S.J. KimBull, Korean Chem. Soc. 33, 3977 (2012).CrossRef H.J. Kim, M.K. Han, H.Y. Kim, W. Lee, and S.J. KimBull, Korean Chem. Soc. 33, 3977 (2012).CrossRef
18.
go back to reference Y. Xu, Z. Ren, W. Ren, G. Cao, K. Deng, and Y. Zhong, Mater. Lett. 62, 4273 (2008).CrossRef Y. Xu, Z. Ren, W. Ren, G. Cao, K. Deng, and Y. Zhong, Mater. Lett. 62, 4273 (2008).CrossRef
20.
go back to reference J.-L. Mi, N. Lock, T. Sun, M. Christensen, M. Søndergaard, P. Hald, H.H. Hng, J. Ma, and B.B. Iversen, ACS Nano 4, 2523 (2010).CrossRef J.-L. Mi, N. Lock, T. Sun, M. Christensen, M. Søndergaard, P. Hald, H.H. Hng, J. Ma, and B.B. Iversen, ACS Nano 4, 2523 (2010).CrossRef
21.
go back to reference M. Salavati-Niasari, M. Bazarganipour, and F. Davar, J. Alloys Compd. 489, 530 (2010).CrossRef M. Salavati-Niasari, M. Bazarganipour, and F. Davar, J. Alloys Compd. 489, 530 (2010).CrossRef
22.
go back to reference Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhao, Mater. Chem. Phys. 103, 484 (2007).CrossRef Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhao, Mater. Chem. Phys. 103, 484 (2007).CrossRef
23.
go back to reference L. Yang, Z. Chen, M. Hong, G. Han, J. Zou, and A.C.S. Appl, Mater. Interfaces. 7, 23694 (2015).CrossRef L. Yang, Z. Chen, M. Hong, G. Han, J. Zou, and A.C.S. Appl, Mater. Interfaces. 7, 23694 (2015).CrossRef
24.
go back to reference W. Guo, J. Ma, and W. Zheng, J. Alloys Compd. 10, 228 (2015). W. Guo, J. Ma, and W. Zheng, J. Alloys Compd. 10, 228 (2015).
25.
26.
go back to reference Y. Zhang, L.P. Hu, T.J. Zhu, J. Xie, and X.B. Zhao, Cryst. Growth Des. 13, 645 (2013).CrossRef Y. Zhang, L.P. Hu, T.J. Zhu, J. Xie, and X.B. Zhao, Cryst. Growth Des. 13, 645 (2013).CrossRef
27.
29.
go back to reference Y. Xu, Z. R. Ã, G. Cao, W. Ren, K. Deng, and Y. Zhong, Phys. B. Condens. Matter. 404, 4029 (2009). Y. Xu, Z. R. Ã, G. Cao, W. Ren, K. Deng, and Y. Zhong, Phys. B. Condens. Matter. 404, 4029 (2009).
30.
go back to reference Y. Deng, X. Zhou, G. Wei, J. Liu, C. Nan, and S. Zhao, J. Phys. Chem. Solids 63, 2119 (2002).CrossRef Y. Deng, X. Zhou, G. Wei, J. Liu, C. Nan, and S. Zhao, J. Phys. Chem. Solids 63, 2119 (2002).CrossRef
31.
go back to reference X.B. Zhao, X.H. Ji, Y.H. Zhang, and B.H. Lu, J. Alloys Compd. 368, 349 (2004).CrossRef X.B. Zhao, X.H. Ji, Y.H. Zhang, and B.H. Lu, J. Alloys Compd. 368, 349 (2004).CrossRef
32.
go back to reference B. Chen, X. Wang, J. Li, Q. Xiong, and C. Zhang, J. Mater. Chem. C 6, 10435 (2018).CrossRef B. Chen, X. Wang, J. Li, Q. Xiong, and C. Zhang, J. Mater. Chem. C 6, 10435 (2018).CrossRef
33.
go back to reference Y. He, Y. Zhang, H. Huang, N. Tian, and Y. Luo, Chem. Commun. 40, 55 (2014). Y. He, Y. Zhang, H. Huang, N. Tian, and Y. Luo, Chem. Commun. 40, 55 (2014).
34.
go back to reference S. H. badiei et al. S.A. Manafi, Introduction to Phase Analysis of Nano Materials Using XPert HighScore Software Iran, Shahroud Islamic Azad University (SIAU), (2012). S. H. badiei et al. S.A. Manafi, Introduction to Phase Analysis of Nano Materials Using XPert HighScore Software Iran, Shahroud Islamic Azad University (SIAU), (2012).
35.
go back to reference M.H.EGh. Dini, Quantitative X-Ray Diffraction Analysis by the Rietveld method Using the MAUD Program (Iran: Isfahan University, 2018). M.H.EGh. Dini, Quantitative X-Ray Diffraction Analysis by the Rietveld method Using the MAUD Program (Iran: Isfahan University, 2018).
36.
go back to reference D.L. Pavia, G.M. Lampman, G.S. Kriz, and J.A. Vyvyan, Introduction to Spectroscopy. Cengage Learning (2014) D.L. Pavia, G.M. Lampman, G.S. Kriz, and J.A. Vyvyan, Introduction to Spectroscopy. Cengage Learning (2014)
37.
go back to reference C. Weilong Y. Bai, 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME) (2015), p. 2272. C. Weilong Y. Bai, 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME) (2015), p. 2272.
38.
go back to reference M. Loor, G. Bendt, U. Hagemann, C. Wölper, W. Assenmacher, and S. Schulz, Dalton Trans. 45, 15326 (2016).CrossRef M. Loor, G. Bendt, U. Hagemann, C. Wölper, W. Assenmacher, and S. Schulz, Dalton Trans. 45, 15326 (2016).CrossRef
40.
go back to reference F. Rouessac, and A. Rouessac, Chemical Analysis: Modern Instrumentation Methods and Techniques (New York: Wiley, 2013). F. Rouessac, and A. Rouessac, Chemical Analysis: Modern Instrumentation Methods and Techniques (New York: Wiley, 2013).
41.
go back to reference D.A. Skoog, F.J. Holler, and S.R. Crouch, Principles of Instrumental Analysis, 6th ed., (Belmont: Thomson Brooks/Cole, 2007), p. 737. D.A. Skoog, F.J. Holler, and S.R. Crouch, Principles of Instrumental Analysis, 6th ed., (Belmont: Thomson Brooks/Cole, 2007), p. 737.
42.
go back to reference P. Anandan, M. Omprakash, M. Azhagurajan, M. Arivanandhan, D. RajanBabu, T. Koyama, and Y. Hayakawa, Cryst Eng Comm. 16, 7956 (2014).CrossRef P. Anandan, M. Omprakash, M. Azhagurajan, M. Arivanandhan, D. RajanBabu, T. Koyama, and Y. Hayakawa, Cryst Eng Comm. 16, 7956 (2014).CrossRef
43.
go back to reference G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and NEW Materials Developments (Berlin, 2013). G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and NEW Materials Developments (Berlin, 2013).
44.
go back to reference V.R. Akshay, M.V. Suneesh, and M. Vasundhara, Inorg. Chem. 56, 6264 (2017).CrossRef V.R. Akshay, M.V. Suneesh, and M. Vasundhara, Inorg. Chem. 56, 6264 (2017).CrossRef
Metadata
Title
Synthesis of High Purity Bismuth Telluride (Bi2Te3) Nanostructures by Co-precipitation Process and Annealing Under Hydrazine Vapor: Structural and Thermoelectric Studies
Authors
Zohre Jafari Vafa
Mohammad Mehdi Bagheri Mohagheghi
Publication date
16-06-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09048-7

Other articles of this Issue 9/2021

Journal of Electronic Materials 9/2021 Go to the issue