Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors

Authors : Lakshmanan Karuppasamy, Lakshmanan Gurusamy, Gang-Juan Lee, Jerry J. Wu

Published in: Graphene Functionalization Strategies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reduced graphene oxide (RGO), atomically thin two-dimensional carbon nanosheets, owns outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These unique properties have made reduced graphene oxide an ideal platform for constructing a series of RGO-based functional nanomaterials. Specifically, RGO and RGO derivatives have been utilized as templates for the synthesis of various noble-metal/metal oxide nanocomposites. These hybrid nanocomposites materials are promising alternatives to reduce the drawback of using only transition metal nanoparticles in various applications, such as electrochemical energy storage and conversion technology of supercapacitors and fuel cells. The goal of this chapter is to discuss the state-of-the-art of reduced graphene oxide-based metal and metal oxide nanocomposites with a detailed account of their synthesis and properties. Especially, much attention has been paid to their synthesis and a wide range of applications in various fields, such as electrochemical and electrical fields. This chapter is presented first time with an introduction, followed by synthetic methods of RGO and RGO-based nanocomposites. Then, the application of this novel RGO/metal-metal oxide nanocomposites in fuel cells and supercapacitors are summarized and discussed. Finally, the future research trends and challenges of design and synthesis of RGO/metal-metal oxide nanocomposites are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.A., Zhang, Y., Dubonos, S.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.A., Zhang, Y., Dubonos, S.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
2.
go back to reference Guo, S., Dong, S.: Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40(5), 2644–2672 (2011)CrossRef Guo, S., Dong, S.: Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40(5), 2644–2672 (2011)CrossRef
3.
go back to reference Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)CrossRef Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)CrossRef
4.
go back to reference Liang, H.W., Zhuang, X., Brüller, S., Feng, X., Müllen, K.: Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014)CrossRef Liang, H.W., Zhuang, X., Brüller, S., Feng, X., Müllen, K.: Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014)CrossRef
5.
go back to reference Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162 (1985)CrossRef Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162 (1985)CrossRef
6.
go back to reference Ajayan, P.M.: Capillarity-induced filling of carbon nanotubes. Nature 361(6410), 333 (1993)CrossRef Ajayan, P.M.: Capillarity-induced filling of carbon nanotubes. Nature 361(6410), 333 (1993)CrossRef
7.
go back to reference Kauffman, D.R., Star, A.: Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst 135(11), 2790–2797 (2010)CrossRef Kauffman, D.R., Star, A.: Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst 135(11), 2790–2797 (2010)CrossRef
8.
go back to reference Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6(11), 858 (2007)CrossRef Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6(11), 858 (2007)CrossRef
9.
go back to reference Antonietti, M., Müllen, K.: Carbon: the sixth element. Adv. Mater. 22(7), 787 (2010)CrossRef Antonietti, M., Müllen, K.: Carbon: the sixth element. Adv. Mater. 22(7), 787 (2010)CrossRef
10.
go back to reference Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-Warthan, A.A., Tremel, W.: Graphene-based metal and metal oxide nanocomposites: synthesis, properties, and their applications. J. Mater. Chem. A 3(37), 18753–18808 (2015)CrossRef Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-Warthan, A.A., Tremel, W.: Graphene-based metal and metal oxide nanocomposites: synthesis, properties, and their applications. J. Mater. Chem. A 3(37), 18753–18808 (2015)CrossRef
11.
go back to reference Zhu, C., Guo, S., Fang, Y., Han, L., Wang, E., Dong, S.: One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res. 4(7), 648–657 (2011)CrossRef Zhu, C., Guo, S., Fang, Y., Han, L., Wang, E., Dong, S.: One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res. 4(7), 648–657 (2011)CrossRef
12.
go back to reference Zhu, C., Zhai, J., Wen, D., Dong, S.: Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 22(13), 6300–6306 (2012)CrossRef Zhu, C., Zhai, J., Wen, D., Dong, S.: Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 22(13), 6300–6306 (2012)CrossRef
13.
go back to reference Paek, S.M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2008)CrossRef Paek, S.M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2008)CrossRef
14.
go back to reference Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Zhang, H.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)CrossRef Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Zhang, H.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)CrossRef
15.
go back to reference Porada, S., Weingarth, D., Hamelers, H.V.M., Bryjak, M., Presser, V., Biesheuvel, P.M.: Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. J. Mater. Chem. A 2, 9313–9321 (2014)CrossRef Porada, S., Weingarth, D., Hamelers, H.V.M., Bryjak, M., Presser, V., Biesheuvel, P.M.: Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. J. Mater. Chem. A 2, 9313–9321 (2014)CrossRef
16.
go back to reference Porada, S., Zhao, R., van der Wal, A., Presser, V., Biesheuvel, P.M.: Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013)CrossRef Porada, S., Zhao, R., van der Wal, A., Presser, V., Biesheuvel, P.M.: Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013)CrossRef
17.
go back to reference Singh, K., Arora, S.: Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 41, 807–878 (2011)CrossRef Singh, K., Arora, S.: Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 41, 807–878 (2011)CrossRef
18.
go back to reference Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008)CrossRef Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008)CrossRef
19.
go back to reference Peng, C., et al.: Carbon nanotube and conducting polymer composites for supercapacitors. Nat. Sci. 18, 777–788 (2008) Peng, C., et al.: Carbon nanotube and conducting polymer composites for supercapacitors. Nat. Sci. 18, 777–788 (2008)
20.
go back to reference Burke, A.: Ultra capacitors: why, how, and where is the technology. J. Power Sources 9(1), 37–50 (2000)CrossRef Burke, A.: Ultra capacitors: why, how, and where is the technology. J. Power Sources 9(1), 37–50 (2000)CrossRef
21.
go back to reference Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Banerjee, S.K.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRef Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Banerjee, S.K.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRef
22.
go back to reference Capasso, A., Dikonimos, T., Sarto, F., Tamburrano, A., De Bellis, G., Sarto, M.S., Lisi, N.: Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein J. Nanotechnol. 6, 2028 (2015)CrossRef Capasso, A., Dikonimos, T., Sarto, F., Tamburrano, A., De Bellis, G., Sarto, M.S., Lisi, N.: Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein J. Nanotechnol. 6, 2028 (2015)CrossRef
23.
go back to reference Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A., Rao, C.N.R.: A simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)CrossRef Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A., Rao, C.N.R.: A simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)CrossRef
24.
go back to reference Sutter, P.W., Flege, J.I., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7(5), 406 (2008)CrossRef Sutter, P.W., Flege, J.I., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7(5), 406 (2008)CrossRef
25.
go back to reference Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)CrossRef Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)CrossRef
26.
go back to reference Pei, S., Cheng, H.M.: The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef Pei, S., Cheng, H.M.: The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef
27.
go back to reference McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRef McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRef
28.
go back to reference Sun, X., Luo, D., Liu, J., Evans, D.G.: Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6), 3381–3389 (2010)CrossRef Sun, X., Luo, D., Liu, J., Evans, D.G.: Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6), 3381–3389 (2010)CrossRef
29.
go back to reference An, C., Wang, Y., Wang, Y., Liu, G., Li, L., Qiu, F., Yuan, H.: Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Adv. 3(14), 4628–4633 (2013)CrossRef An, C., Wang, Y., Wang, Y., Liu, G., Li, L., Qiu, F., Yuan, H.: Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Adv. 3(14), 4628–4633 (2013)CrossRef
30.
go back to reference Xu, Y., Sheng, K., Li, C., Shi, G.: Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 21(20), 7376–7380 (2011)CrossRef Xu, Y., Sheng, K., Li, C., Shi, G.: Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 21(20), 7376–7380 (2011)CrossRef
31.
go back to reference Bera, R., Kundu, S., Patra, A.: 2D hybrid nanostructure of reduced graphene oxide–CdS nanosheet for enhanced photocatalysis. ACS Appl. Mater. Interfaces 7(24), 13251–13259 (2015)CrossRef Bera, R., Kundu, S., Patra, A.: 2D hybrid nanostructure of reduced graphene oxide–CdS nanosheet for enhanced photocatalysis. ACS Appl. Mater. Interfaces 7(24), 13251–13259 (2015)CrossRef
32.
go back to reference Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7(11), 3394–3398 (2007)CrossRef Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7(11), 3394–3398 (2007)CrossRef
33.
go back to reference Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)CrossRef Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)CrossRef
34.
go back to reference Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282 (2006)CrossRef Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282 (2006)CrossRef
35.
go back to reference Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)CrossRef Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)CrossRef
36.
go back to reference Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)CrossRef Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)CrossRef
37.
go back to reference Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192 (2012)CrossRef Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192 (2012)CrossRef
38.
go back to reference Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008)CrossRef Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008)CrossRef
39.
go back to reference Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877 (2009)CrossRef Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877 (2009)CrossRef
40.
go back to reference Yin, P.T., Shah, S., Chhowalla, M., Lee, K.B.: Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 115(7), 2483–2531 (2015)CrossRef Yin, P.T., Shah, S., Chhowalla, M., Lee, K.B.: Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 115(7), 2483–2531 (2015)CrossRef
41.
go back to reference Wu, Z.S., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H.M.: Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009)CrossRef Wu, Z.S., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H.M.: Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009)CrossRef
42.
go back to reference Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F.: Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008)CrossRef Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F.: Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008)CrossRef
43.
go back to reference Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U.: Das adsorptionsverhalten sehr dünner kohlenstoff-folien. Z. Anorg. Allg. Chem. 316(3–4), 119–127 (1962)CrossRef Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U.: Das adsorptionsverhalten sehr dünner kohlenstoff-folien. Z. Anorg. Allg. Chem. 316(3–4), 119–127 (1962)CrossRef
44.
go back to reference Fernández-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., Tascon, J.M.D.: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010)CrossRef Fernández-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., Tascon, J.M.D.: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010)CrossRef
45.
go back to reference Han, H.J., Chen, Y.N., Wang, Z.J.: Effect of microwave irradiation on reduction of graphene oxide films. RSC Adv. 5(113), 92940–92946 (2015)CrossRef Han, H.J., Chen, Y.N., Wang, Z.J.: Effect of microwave irradiation on reduction of graphene oxide films. RSC Adv. 5(113), 92940–92946 (2015)CrossRef
46.
go back to reference Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7), 2118–2122 (2010)CrossRef Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7), 2118–2122 (2010)CrossRef
47.
go back to reference Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., Dong, S.: Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15(25), 6116–6120 (2009)CrossRef Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., Dong, S.: Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15(25), 6116–6120 (2009)CrossRef
48.
go back to reference Ramesha, G.K., Sampath, S.: Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C 113(19), 7985–7989 (2009)CrossRef Ramesha, G.K., Sampath, S.: Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C 113(19), 7985–7989 (2009)CrossRef
49.
go back to reference Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’Homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)CrossRef Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’Homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)CrossRef
50.
go back to reference Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)CrossRef Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)CrossRef
51.
go back to reference Wang, H., Casalongue, H.S., Liang, Y., Dai, H.: Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010)CrossRef Wang, H., Casalongue, H.S., Liang, Y., Dai, H.: Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010)CrossRef
52.
go back to reference Yuan, B., Bao, C., Qian, X., Wen, P., Xing, W., Song, L., Hu, Y.: A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater. Res. Bull. 55, 48–52 (2014)CrossRef Yuan, B., Bao, C., Qian, X., Wen, P., Xing, W., Song, L., Hu, Y.: A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater. Res. Bull. 55, 48–52 (2014)CrossRef
53.
go back to reference Gao, X., Jang, J., Nagase, S.: Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)CrossRef Gao, X., Jang, J., Nagase, S.: Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)CrossRef
54.
go back to reference Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.M.: Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)CrossRef Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.M.: Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)CrossRef
55.
go back to reference Wei, Z., Chen, Y., Wang, J., Su, D., Tang, M., Mao, S., Wang, Y.: Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 6(9), 5816–5822 (2016)CrossRef Wei, Z., Chen, Y., Wang, J., Su, D., Tang, M., Mao, S., Wang, Y.: Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 6(9), 5816–5822 (2016)CrossRef
56.
go back to reference Lee, J.S., You, K.H., Park, C.B.: Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24(8), 1084–1088 (2012)CrossRef Lee, J.S., You, K.H., Park, C.B.: Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24(8), 1084–1088 (2012)CrossRef
57.
go back to reference Zhang, Y., Li, D., Zhang, Y., Zhou, X., Guo, S., Yang, L.: Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J. Mater. Chem. A 2(22), 8273–8280 (2014)CrossRef Zhang, Y., Li, D., Zhang, Y., Zhou, X., Guo, S., Yang, L.: Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J. Mater. Chem. A 2(22), 8273–8280 (2014)CrossRef
58.
go back to reference Myung, S., Solanki, A., Kim, C., Park, J., Kim, K.S., Lee, K.B.: Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 23(19), 2221–2225 (2011)CrossRef Myung, S., Solanki, A., Kim, C., Park, J., Kim, K.S., Lee, K.B.: Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 23(19), 2221–2225 (2011)CrossRef
59.
go back to reference Wu, Z.S., Wang, D.W., Ren, W., Zhao, J., Zhou, G., Li, F., Cheng, H.M.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20(20), 3595–3602 (2010)CrossRef Wu, Z.S., Wang, D.W., Ren, W., Zhao, J., Zhou, G., Li, F., Cheng, H.M.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20(20), 3595–3602 (2010)CrossRef
60.
go back to reference Lv, W., Sun, F., Tang, D.M., Fang, H.T., Liu, C., Yang, Q.H., Cheng, H.M.: A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 21(25), 9014–9019 (2011)CrossRef Lv, W., Sun, F., Tang, D.M., Fang, H.T., Liu, C., Yang, Q.H., Cheng, H.M.: A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 21(25), 9014–9019 (2011)CrossRef
61.
go back to reference Dutta, A., Ouyang, J.: Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catal. 5(2), 1371–1380 (2015)CrossRef Dutta, A., Ouyang, J.: Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catal. 5(2), 1371–1380 (2015)CrossRef
62.
go back to reference Li, J., Tang, W., Liu, G., Li, W., Deng, Y., Yang, J., Chen, Y.: Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds. Catal. Today 278, 203–208 (2016)CrossRef Li, J., Tang, W., Liu, G., Li, W., Deng, Y., Yang, J., Chen, Y.: Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds. Catal. Today 278, 203–208 (2016)CrossRef
63.
go back to reference Zhou, Y., Hu, X.C., Fan, Q., Wen, H.R.: Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 4(12), 4587–4591 (2016)CrossRef Zhou, Y., Hu, X.C., Fan, Q., Wen, H.R.: Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 4(12), 4587–4591 (2016)CrossRef
64.
go back to reference Eigler, S., Hirsch, A.: Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew. Chem. Int. Ed. 53(30), 7720–7738 (2014)CrossRef Eigler, S., Hirsch, A.: Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew. Chem. Int. Ed. 53(30), 7720–7738 (2014)CrossRef
65.
go back to reference Fan, X., Zhang, G., Zhang, F.: Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 44(10), 3023–3035 (2015)CrossRef Fan, X., Zhang, G., Zhang, F.: Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 44(10), 3023–3035 (2015)CrossRef
66.
go back to reference Julkapli, N.M., Bagheri, S.: Graphene-supported heterogeneous catalysts: an overview. Int. J. Hydrogen Energy 40(2), 948–979 (2015)CrossRef Julkapli, N.M., Bagheri, S.: Graphene-supported heterogeneous catalysts: an overview. Int. J. Hydrogen Energy 40(2), 948–979 (2015)CrossRef
67.
go back to reference Wang, J., Kondrat, S.A., Wang, Y., Brett, G.L., Giles, C., Bartley, J.K., Hutchings, G.J.: Au–Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catal. 5(6), 3575–3587 (2015)CrossRef Wang, J., Kondrat, S.A., Wang, Y., Brett, G.L., Giles, C., Bartley, J.K., Hutchings, G.J.: Au–Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catal. 5(6), 3575–3587 (2015)CrossRef
68.
go back to reference Sun, Y., Du, C., An, M., Du, L., Tan, Q., Liu, C., Yin, G.: Boron-doped graphene as promising support for a platinum catalyst with superior activity towards the methanol electrooxidation reaction. J. Power Sources 300, 245–253 (2015)CrossRef Sun, Y., Du, C., An, M., Du, L., Tan, Q., Liu, C., Yin, G.: Boron-doped graphene as promising support for a platinum catalyst with superior activity towards the methanol electrooxidation reaction. J. Power Sources 300, 245–253 (2015)CrossRef
69.
go back to reference Wang, C., Astruc, D.: Recent developments of metallic nanoparticle-graphene nanocatalysts. Prog. Mater. Sci. (2018) Wang, C., Astruc, D.: Recent developments of metallic nanoparticle-graphene nanocatalysts. Prog. Mater. Sci. (2018)
70.
go back to reference Li, D., Xu, H., Zhang, L., Leung, D.Y., Vilela, F., Wang, H., Xuan, J.: Boosting the performance of formic acid microfluidic fuel cell: oxygen annealing enhanced Pd@ graphene electrocatalyst. Int. J. Hydrogen Energy 41(24), 10249–10254 (2016)CrossRef Li, D., Xu, H., Zhang, L., Leung, D.Y., Vilela, F., Wang, H., Xuan, J.: Boosting the performance of formic acid microfluidic fuel cell: oxygen annealing enhanced Pd@ graphene electrocatalyst. Int. J. Hydrogen Energy 41(24), 10249–10254 (2016)CrossRef
71.
go back to reference Zhang, L.Y., Zhao, Z.L., Yuan, W., Li, C.M.: Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale 8(4), 1905–1909 (2016)CrossRef Zhang, L.Y., Zhao, Z.L., Yuan, W., Li, C.M.: Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale 8(4), 1905–1909 (2016)CrossRef
72.
go back to reference Zhang, X., Zhu, J., Tiwary, C.S., Ma, Z., Huang, H., Zhang, J., Wu, Y.: Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 8(17), 10858–10865 (2016)CrossRef Zhang, X., Zhu, J., Tiwary, C.S., Ma, Z., Huang, H., Zhang, J., Wu, Y.: Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 8(17), 10858–10865 (2016)CrossRef
73.
go back to reference Zhang, L.Y., Zhao, Z.L., Li, C.M.: Formic acid-reduced ultrasmall Pd nanocrystals on graphene to provide superior electrocatalytic activity and stability toward formic acid oxidation. Nano Energy 11, 71–77 (2015)CrossRef Zhang, L.Y., Zhao, Z.L., Li, C.M.: Formic acid-reduced ultrasmall Pd nanocrystals on graphene to provide superior electrocatalytic activity and stability toward formic acid oxidation. Nano Energy 11, 71–77 (2015)CrossRef
74.
go back to reference Kim, J., Park, J.E., Momma, T., Osaka, T.: Synthesis of Pd–Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction. Electrochim. Acta 54(12), 3412–3418 (2009)CrossRef Kim, J., Park, J.E., Momma, T., Osaka, T.: Synthesis of Pd–Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction. Electrochim. Acta 54(12), 3412–3418 (2009)CrossRef
75.
go back to reference Karuppasamy, L., Chen, C.Y., Anandan, S., Wu, J.J.: Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium. Catal. Today 307, 308–317 (2018)CrossRef Karuppasamy, L., Chen, C.Y., Anandan, S., Wu, J.J.: Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium. Catal. Today 307, 308–317 (2018)CrossRef
76.
go back to reference Zhang, B., Zhang, C., He, H., Yu, Y., Wang, L., Zhang, J.: Electrochemical synthesis of catalytically active Ru/RuO2 core–shell nanoparticles without stabilizer. Chem. Mater. 22(13), 4056–4061 (2010)CrossRef Zhang, B., Zhang, C., He, H., Yu, Y., Wang, L., Zhang, J.: Electrochemical synthesis of catalytically active Ru/RuO2 core–shell nanoparticles without stabilizer. Chem. Mater. 22(13), 4056–4061 (2010)CrossRef
77.
go back to reference Rao, C.R., Trivedi, D.C.: Chemical and electrochemical depositions of platinum group metals and their applications. Coord. Chem. Rev. 249(5–6), 613–631 (2005)CrossRef Rao, C.R., Trivedi, D.C.: Chemical and electrochemical depositions of platinum group metals and their applications. Coord. Chem. Rev. 249(5–6), 613–631 (2005)CrossRef
78.
go back to reference Shahrokhian, S., Rezaee, S.: Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim. Acta 259, 36–47 (2018)CrossRef Shahrokhian, S., Rezaee, S.: Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim. Acta 259, 36–47 (2018)CrossRef
79.
go back to reference Liu, J., Ma, Q., Huang, Z., Liu, G., Zhang, H.: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 1800696 (2018) Liu, J., Ma, Q., Huang, Z., Liu, G., Zhang, H.: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 1800696 (2018)
80.
go back to reference Liu, M., Zhang, R., Chen, W.: Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem. Rev. 114(10), 5117–5160 (2014)CrossRef Liu, M., Zhang, R., Chen, W.: Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem. Rev. 114(10), 5117–5160 (2014)CrossRef
81.
go back to reference Li, Q., Mahmood, N., Zhu, J., Hou, Y., Sun, S.: Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9(5), 668–683 (2014)CrossRef Li, Q., Mahmood, N., Zhu, J., Hou, Y., Sun, S.: Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9(5), 668–683 (2014)CrossRef
82.
go back to reference Xia, B., Yan, Y., Wang, X., Lou, X.W.D.: Recent progress on graphene-based hybrid electrocatalysts. Mater. Horizons 1(4), 379–399 (2014)CrossRef Xia, B., Yan, Y., Wang, X., Lou, X.W.D.: Recent progress on graphene-based hybrid electrocatalysts. Mater. Horizons 1(4), 379–399 (2014)CrossRef
83.
go back to reference Ambrosi, A., Chua, C.K., Latiff, N.M., Loo, A.H., Wong, C.H.A., Eng, A.Y.S., Pumera, M.: Graphene and its electrochemistry—an update. Chem. Soc. Rev. 45(9), 2458–2493 (2016)CrossRef Ambrosi, A., Chua, C.K., Latiff, N.M., Loo, A.H., Wong, C.H.A., Eng, A.Y.S., Pumera, M.: Graphene and its electrochemistry—an update. Chem. Soc. Rev. 45(9), 2458–2493 (2016)CrossRef
84.
go back to reference Su, D.S., Perathoner, S., Centi, G.: Nanocarbons for the development of advanced catalysts. Chem. Rev. 113(8), 5782–5816 (2013)CrossRef Su, D.S., Perathoner, S., Centi, G.: Nanocarbons for the development of advanced catalysts. Chem. Rev. 113(8), 5782–5816 (2013)CrossRef
85.
go back to reference Kumar, A., Xu, Q.: Two-dimensional layered materials as catalyst supports. ChemNanoMat 4(1), 28–40 (2018)CrossRef Kumar, A., Xu, Q.: Two-dimensional layered materials as catalyst supports. ChemNanoMat 4(1), 28–40 (2018)CrossRef
86.
go back to reference Sun, S.H., Yang, D.Q., Villers, D., Zhang, G.X., Sacher, E., Dodelet, J.P.: Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 20(3), 571–574 (2008)CrossRef Sun, S.H., Yang, D.Q., Villers, D., Zhang, G.X., Sacher, E., Dodelet, J.P.: Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 20(3), 571–574 (2008)CrossRef
87.
go back to reference Wang, M., Wang, X., Li, J., Liu, L.: In situ synthesis of 3D platinum nanoflowers on porous silicon for monolithic integrated micro direct methanol fuel cells. J. Mater. Chem. A 1(28), 8127–8133 (2013)CrossRef Wang, M., Wang, X., Li, J., Liu, L.: In situ synthesis of 3D platinum nanoflowers on porous silicon for monolithic integrated micro direct methanol fuel cells. J. Mater. Chem. A 1(28), 8127–8133 (2013)CrossRef
88.
go back to reference Yin, A.X., Min, X.Q., Zhang, Y.W., Yan, C.H.: Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt–Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011)CrossRef Yin, A.X., Min, X.Q., Zhang, Y.W., Yan, C.H.: Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt–Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011)CrossRef
89.
go back to reference Lu, Y., Jiang, Y., Wu, H., Chen, W.: Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 117(6), 2926–2938 (2013)CrossRef Lu, Y., Jiang, Y., Wu, H., Chen, W.: Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 117(6), 2926–2938 (2013)CrossRef
90.
go back to reference Li, S.S., Zheng, J.N., Ma, X., Hu, Y.Y., Wang, A.J., Chen, J.R., Feng, J.J.: Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties. Nanoscale 6(11), 5708–5713 (2014)CrossRef Li, S.S., Zheng, J.N., Ma, X., Hu, Y.Y., Wang, A.J., Chen, J.R., Feng, J.J.: Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties. Nanoscale 6(11), 5708–5713 (2014)CrossRef
91.
go back to reference Du, S., Lu, Y., Steinberger-Wilckens, R.: PtPd nanowire arrays supported on reduced graphene oxide as advanced electrocatalysts for methanol oxidation. Carbon 79, 346–353 (2014)CrossRef Du, S., Lu, Y., Steinberger-Wilckens, R.: PtPd nanowire arrays supported on reduced graphene oxide as advanced electrocatalysts for methanol oxidation. Carbon 79, 346–353 (2014)CrossRef
92.
go back to reference Chen, Z., Waje, M., Li, W., Yan, Y.: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. 119(22), 4138–4141 (2007)CrossRef Chen, Z., Waje, M., Li, W., Yan, Y.: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. 119(22), 4138–4141 (2007)CrossRef
93.
go back to reference Lu, Y., Jiang, Y., Chen, W.: PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2(5), 836–844 (2013)CrossRef Lu, Y., Jiang, Y., Chen, W.: PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2(5), 836–844 (2013)CrossRef
94.
go back to reference Lv, J.J., Wisitruangsakul, N., Feng, J.J., Luo, J., Fang, K.M., Wang, A.J.: Biomolecule-assisted synthesis of porous PtPd alloyed nanoflowers supported on reduced graphene oxide with highly electrocatalytic performance for ethanol oxidation and oxygen reduction. Electrochim. Acta 160, 100–107 (2015)CrossRef Lv, J.J., Wisitruangsakul, N., Feng, J.J., Luo, J., Fang, K.M., Wang, A.J.: Biomolecule-assisted synthesis of porous PtPd alloyed nanoflowers supported on reduced graphene oxide with highly electrocatalytic performance for ethanol oxidation and oxygen reduction. Electrochim. Acta 160, 100–107 (2015)CrossRef
95.
go back to reference Xu, C., Tian, Z., Shen, P., Jiang, S.P.: Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim. Acta 53(5), 2610–2618 (2008)CrossRef Xu, C., Tian, Z., Shen, P., Jiang, S.P.: Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim. Acta 53(5), 2610–2618 (2008)CrossRef
96.
go back to reference Rostami, H., Rostami, A.A., Omrani, A.: An electrochemical method to prepare of Pd/Cu2O/MWCNT nanostructure as an anode electrocatalyst for alkaline direct ethanol fuel cells. Electrochim. Acta 194, 431–440 (2016)CrossRef Rostami, H., Rostami, A.A., Omrani, A.: An electrochemical method to prepare of Pd/Cu2O/MWCNT nanostructure as an anode electrocatalyst for alkaline direct ethanol fuel cells. Electrochim. Acta 194, 431–440 (2016)CrossRef
97.
go back to reference Liu, P., Cheng, Z., Ma, L., Zhang, M., Qiu, Y., Chen, M., Cheng, F.: Cuprous oxide template synthesis of hollow-cubic Cu2O@PdxRuy nanoparticles for ethanol electrooxidation in alkaline media. RSC Adv. 6(80), 76684–76690 (2016)CrossRef Liu, P., Cheng, Z., Ma, L., Zhang, M., Qiu, Y., Chen, M., Cheng, F.: Cuprous oxide template synthesis of hollow-cubic Cu2O@PdxRuy nanoparticles for ethanol electrooxidation in alkaline media. RSC Adv. 6(80), 76684–76690 (2016)CrossRef
98.
go back to reference Zhang, N., Fan, Y., Fan, H., Shao, H., Wang, J., Zhang, J., Cao, C.: Cross-linked Co3O4 nanowalls synthesized by electrochemical oxidation of metallic cobalt layer for oxygen evolution. ECS Electrochem. Lett. 1(2), H8–H10 (2012)CrossRef Zhang, N., Fan, Y., Fan, H., Shao, H., Wang, J., Zhang, J., Cao, C.: Cross-linked Co3O4 nanowalls synthesized by electrochemical oxidation of metallic cobalt layer for oxygen evolution. ECS Electrochem. Lett. 1(2), H8–H10 (2012)CrossRef
99.
go back to reference Ye, L., Li, Z., Zhang, X., Lei, F., Lin, S.: One-step microwave synthesis of Pt (Pd)/Cu2O/GNs composites and their electro-photo-synergistic catalytic properties for methanol oxidation. J. Mater. Chem. A 2(48), 21010–21019 (2014)CrossRef Ye, L., Li, Z., Zhang, X., Lei, F., Lin, S.: One-step microwave synthesis of Pt (Pd)/Cu2O/GNs composites and their electro-photo-synergistic catalytic properties for methanol oxidation. J. Mater. Chem. A 2(48), 21010–21019 (2014)CrossRef
100.
go back to reference Zhao, Y., Zhan, L., Tian, J., Nie, S., Ning, Z.: MnO2 modified multi-walled carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in alkaline media. Int. J. Hydrogen Energy 35(19), 10522–10526 (2010)CrossRef Zhao, Y., Zhan, L., Tian, J., Nie, S., Ning, Z.: MnO2 modified multi-walled carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in alkaline media. Int. J. Hydrogen Energy 35(19), 10522–10526 (2010)CrossRef
101.
go back to reference Zheng, J.N., Li, S.S., Ma, X., Chen, F.Y., Wang, A.J., Chen, J.R., Feng, J.J.: Green synthesis of core–shell gold–palladium@ palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media. J. Power Sources 262, 270–278 (2014)CrossRef Zheng, J.N., Li, S.S., Ma, X., Chen, F.Y., Wang, A.J., Chen, J.R., Feng, J.J.: Green synthesis of core–shell gold–palladium@ palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media. J. Power Sources 262, 270–278 (2014)CrossRef
102.
go back to reference Wang, S., Iyyamperumal, E., Roy, A., Xue, Y., Yu, D., Dai, L.: Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by Co-doping with boron and nitrogen. Angew. Chem. 123(49), 11960–11964 (2011)CrossRef Wang, S., Iyyamperumal, E., Roy, A., Xue, Y., Yu, D., Dai, L.: Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by Co-doping with boron and nitrogen. Angew. Chem. 123(49), 11960–11964 (2011)CrossRef
103.
go back to reference Lv, J.J., Li, S.S., Zheng, J.N., Wang, A.J., Chen, J.R., Feng, J.J.: Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity. Int. J. Hydrogen Energy 39(7), 3211–3218 (2014)CrossRef Lv, J.J., Li, S.S., Zheng, J.N., Wang, A.J., Chen, J.R., Feng, J.J.: Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity. Int. J. Hydrogen Energy 39(7), 3211–3218 (2014)CrossRef
104.
go back to reference Ye, W., Chen, Y., Zhou, F., Wang, C., Li, Y.: Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. J. Mater. Chem. 22(35), 18327–18334 (2012)CrossRef Ye, W., Chen, Y., Zhou, F., Wang, C., Li, Y.: Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. J. Mater. Chem. 22(35), 18327–18334 (2012)CrossRef
105.
go back to reference Huang, D., Bai, X., Zheng, L.: Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS. J. Phys. Chem. C 115(30), 14641–14647 (2011)CrossRef Huang, D., Bai, X., Zheng, L.: Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS. J. Phys. Chem. C 115(30), 14641–14647 (2011)CrossRef
106.
go back to reference Guo, Y., Sun, X., Liu, Y., Wang, W., Qiu, H., Gao, J.: One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 50(7), 2513–2523 (2012)CrossRef Guo, Y., Sun, X., Liu, Y., Wang, W., Qiu, H., Gao, J.: One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 50(7), 2513–2523 (2012)CrossRef
107.
go back to reference Rodriguez, P., Kwon, Y., Koper, M.T.: The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 4(3), 177 (2012)CrossRef Rodriguez, P., Kwon, Y., Koper, M.T.: The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 4(3), 177 (2012)CrossRef
108.
go back to reference Tateishi, N., Nishimura, K., Yahikozawa, K., Nakagawa, M., Yamada, M., Takasu, Y.: Electrocatalytic properties of ultrafine gold particles towards oxidation of acetaldehyde and ethanol. J. Electroanal. Chem. 352(1–2), 243–252 (1993)CrossRef Tateishi, N., Nishimura, K., Yahikozawa, K., Nakagawa, M., Yamada, M., Takasu, Y.: Electrocatalytic properties of ultrafine gold particles towards oxidation of acetaldehyde and ethanol. J. Electroanal. Chem. 352(1–2), 243–252 (1993)CrossRef
109.
go back to reference Xu, C., Cheng, L., Shen, P., Liu, Y.: Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun. 9(5), 997–1001 (2007)CrossRef Xu, C., Cheng, L., Shen, P., Liu, Y.: Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun. 9(5), 997–1001 (2007)CrossRef
110.
go back to reference Choi, C.H., Kim, M., Kwon, H.C., Cho, S.J., Yun, S., Kim, H.T., Choi, M.: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016)CrossRef Choi, C.H., Kim, M., Kwon, H.C., Cho, S.J., Yun, S., Kim, H.T., Choi, M.: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016)CrossRef
111.
go back to reference Wang, H., Yang, Y., Liang, Y., Zheng, G., Li, Y., Cui, Y., Dai, H.: Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 5(7), 7931–7935 (2012)CrossRef Wang, H., Yang, Y., Liang, Y., Zheng, G., Li, Y., Cui, Y., Dai, H.: Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 5(7), 7931–7935 (2012)CrossRef
112.
go back to reference Xuan, L., Chen, L., Yang, Q., Chen, W., Hou, X., Jiang, Y., et al.: Engineering 2D multi-layer graphene-like Co3O4 thin sheets with vertically aligned nanosheets as basic building units for advanced pseudo capacitor materials. J. Mater. Chem. A. 3, 17525–17533 (2015)CrossRef Xuan, L., Chen, L., Yang, Q., Chen, W., Hou, X., Jiang, Y., et al.: Engineering 2D multi-layer graphene-like Co3O4 thin sheets with vertically aligned nanosheets as basic building units for advanced pseudo capacitor materials. J. Mater. Chem. A. 3, 17525–17533 (2015)CrossRef
113.
go back to reference Moosavifard, S.E., Shamsi, J., Fani, S., Kadkhodazade, S.: 3D ordered nanoporous NiMoO4 for high-performance supercapacitor electrode materials. RSC Adv. 4, 52555–52561 (2014)CrossRef Moosavifard, S.E., Shamsi, J., Fani, S., Kadkhodazade, S.: 3D ordered nanoporous NiMoO4 for high-performance supercapacitor electrode materials. RSC Adv. 4, 52555–52561 (2014)CrossRef
114.
go back to reference Lu, X., Yu, M., Wang, G., Tong, Y., Li, Y.: Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7, 2160–2181 (2014)CrossRef Lu, X., Yu, M., Wang, G., Tong, Y., Li, Y.: Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7, 2160–2181 (2014)CrossRef
115.
go back to reference Chen, T., Dai, L.: Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16, 272–280 (2013)CrossRef Chen, T., Dai, L.: Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16, 272–280 (2013)CrossRef
116.
go back to reference Guo, D., Luo, Y., Yu, X., Li, Q., Wang, T.: High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014)CrossRef Guo, D., Luo, Y., Yu, X., Li, Q., Wang, T.: High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014)CrossRef
117.
go back to reference Hall, P.J., Mirzaeian, M., Fletcher, S.I., Sillars, F.B., Rennie, A.J., Shitta-Bey, G.O., Wilson, G., Cruden, A., Carter, R.: Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)CrossRef Hall, P.J., Mirzaeian, M., Fletcher, S.I., Sillars, F.B., Rennie, A.J., Shitta-Bey, G.O., Wilson, G., Cruden, A., Carter, R.: Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)CrossRef
118.
go back to reference Miller, J.R., Burke, A.F.: Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 4(Spring), 53–57 (2008) Miller, J.R., Burke, A.F.: Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 4(Spring), 53–57 (2008)
119.
go back to reference Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 2nd edn. Kluwer Academic/Plenum Publishers, New York (1999)CrossRef Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 2nd edn. Kluwer Academic/Plenum Publishers, New York (1999)CrossRef
120.
go back to reference Trasatti, S., Kurzweil, P.: Electrochemical supercapacitors as versatile energy stores. Platinum Met. Rev. 38, 46–56 (1994) Trasatti, S., Kurzweil, P.: Electrochemical supercapacitors as versatile energy stores. Platinum Met. Rev. 38, 46–56 (1994)
121.
go back to reference Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRef Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRef
122.
go back to reference Carter, R., Cruden, A.: Strategies for control of a battery/supercapacitor system in an electric vehicle. In: 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, vol. 1–3, pp. 727–732. IEEE (2008) Carter, R., Cruden, A.: Strategies for control of a battery/supercapacitor system in an electric vehicle. In: 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, vol. 1–3, pp. 727–732. IEEE (2008)
123.
go back to reference Gao, Q., Demarconnay, L., Raymundo-Pinero, E., Beguin, F.: Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5, 9611–9617 (2012)CrossRef Gao, Q., Demarconnay, L., Raymundo-Pinero, E., Beguin, F.: Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5, 9611–9617 (2012)CrossRef
124.
go back to reference Fic, K., Lota, G., Meller, M., Frackowiak, E.: Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012)CrossRef Fic, K., Lota, G., Meller, M., Frackowiak, E.: Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012)CrossRef
125.
go back to reference Zhang, Q., Rong, J., Ma, D., Wei, B.: The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ. Sci. 4, 2152–2159 (2011)CrossRef Zhang, Q., Rong, J., Ma, D., Wei, B.: The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ. Sci. 4, 2152–2159 (2011)CrossRef
126.
go back to reference Wan, L., Sun, S., Zhai, T., Savilov, S.V., Lunin, V.V., Xia, H.: Multiscale porous graphene oxide network with high packing density for asymmetric supercapacitors. J. Mater. Res. 1–12 (2017) Wan, L., Sun, S., Zhai, T., Savilov, S.V., Lunin, V.V., Xia, H.: Multiscale porous graphene oxide network with high packing density for asymmetric supercapacitors. J. Mater. Res. 1–12 (2017)
127.
go back to reference Yang, J., Hu, J., Zhu, M., Zhao, Y., Chen, H., Pan, F.: Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors. J. Power Sources 365, 362–371 (2017)CrossRef Yang, J., Hu, J., Zhu, M., Zhao, Y., Chen, H., Pan, F.: Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors. J. Power Sources 365, 362–371 (2017)CrossRef
128.
go back to reference Jana, A., Scheer, E., Polarz, S.: Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8, 688–714 (2017)CrossRef Jana, A., Scheer, E., Polarz, S.: Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8, 688–714 (2017)CrossRef
129.
go back to reference Fan, H., Niu, R., Duan, J., Liu, W., Shen, W.: Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475–19483 (2016)CrossRef Fan, H., Niu, R., Duan, J., Liu, W., Shen, W.: Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475–19483 (2016)CrossRef
130.
go back to reference Wu, Z.-S., Zhou, G., Yin, L.-C., Ren, W., Li, F., Cheng, H.-M.: Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)CrossRef Wu, Z.-S., Zhou, G., Yin, L.-C., Ren, W., Li, F., Cheng, H.-M.: Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)CrossRef
131.
go back to reference Frackowiak, E.: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)CrossRef Frackowiak, E.: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)CrossRef
132.
go back to reference Hu, C.-C., Chang, K.-H., Lin, M.-C., Wu, Y.-T.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)CrossRef Hu, C.-C., Chang, K.-H., Lin, M.-C., Wu, Y.-T.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)CrossRef
133.
go back to reference Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., Qin, L.-C.: Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon N. Y. 49, 2917–2925 (2011)CrossRef Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., Qin, L.-C.: Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon N. Y. 49, 2917–2925 (2011)CrossRef
134.
go back to reference Deng, W., Ji, X., Chen, Q., Banks, C.E.: Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv. 1, 1171–1178 (2011)CrossRef Deng, W., Ji, X., Chen, Q., Banks, C.E.: Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv. 1, 1171–1178 (2011)CrossRef
135.
go back to reference Shanshan, L., Yansu, W., Zhiling, M.: Bi2O3 with reduced graphene oxide composite as a supercapacitor electrode. Int. J. Electrochem. Sci. 13, 12256–12265 (2018) Shanshan, L., Yansu, W., Zhiling, M.: Bi2O3 with reduced graphene oxide composite as a supercapacitor electrode. Int. J. Electrochem. Sci. 13, 12256–12265 (2018)
136.
go back to reference Jinfeng, S., Zhangpeng, L., Jinqing, W., Wei, H., Peiwei, G., Ping, W., Zhaofeng, W., Shengrong, Y.: Ni/Bi battery based on Ni(OH)2 nanoparticles/graphene sheets and Bi2O3 rods/graphene sheets with high performance. J. Alloy. Compd. 643, 231–238 (2015)CrossRef Jinfeng, S., Zhangpeng, L., Jinqing, W., Wei, H., Peiwei, G., Ping, W., Zhaofeng, W., Shengrong, Y.: Ni/Bi battery based on Ni(OH)2 nanoparticles/graphene sheets and Bi2O3 rods/graphene sheets with high performance. J. Alloy. Compd. 643, 231–238 (2015)CrossRef
137.
go back to reference Huan-Wen, W., Zhong-Ai, H., Yan-Qin, C., Yan-Li, C., Zi-Qiang, L., Zi-Yu, Z., Yu-Ying, Y.: Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta 55, 8974–8980 (2010)CrossRef Huan-Wen, W., Zhong-Ai, H., Yan-Qin, C., Yan-Li, C., Zi-Qiang, L., Zi-Yu, Z., Yu-Ying, Y.: Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta 55, 8974–8980 (2010)CrossRef
138.
go back to reference Ezhil, V.A.T., Bose, D., Muruganantham, R., Seung-Kyu, H., Chang-Soo, J., Yun Suk, H., Young-Kyu, H.: Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A 6, 14367 (2018) Ezhil, V.A.T., Bose, D., Muruganantham, R., Seung-Kyu, H., Chang-Soo, J., Yun Suk, H., Young-Kyu, H.: Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A 6, 14367 (2018)
139.
go back to reference Rajesh, K., Hyun-Jun, K., Park, S., Anchal, S., Il-Kwon, O.: Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon 79, 192–202 (2014)CrossRef Rajesh, K., Hyun-Jun, K., Park, S., Anchal, S., Il-Kwon, O.: Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon 79, 192–202 (2014)CrossRef
140.
go back to reference Arshid, N., Navaneethan, D., Fatin, S., Mahipal, Y.K., Ramesh, K., Ramesh, S.: Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC Adv. 6, 34894 (2016)CrossRef Arshid, N., Navaneethan, D., Fatin, S., Mahipal, Y.K., Ramesh, K., Ramesh, S.: Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC Adv. 6, 34894 (2016)CrossRef
141.
go back to reference Chengen, H., Yachao, L., Pengyuan, G., Long, C., Dean, S., Xiaolin, X., Robert, K., Yiu, L., Yingkui, Y.: Bioinspired Co3O4/graphene layered composite films as self-supported electrodes for supercapacitors. Compos. B 121, 68–74 (2017)CrossRef Chengen, H., Yachao, L., Pengyuan, G., Long, C., Dean, S., Xiaolin, X., Robert, K., Yiu, L., Yingkui, Y.: Bioinspired Co3O4/graphene layered composite films as self-supported electrodes for supercapacitors. Compos. B 121, 68–74 (2017)CrossRef
142.
go back to reference Jintao, Z., Jianwen, J., Zhao, X.S.: Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 115, 6448–6454 (2011)CrossRef Jintao, Z., Jianwen, J., Zhao, X.S.: Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 115, 6448–6454 (2011)CrossRef
143.
go back to reference Jiayi, Z., Junhui, Y.: Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)CrossRef Jiayi, Z., Junhui, Y.: Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)CrossRef
144.
go back to reference Jian, C., Meihua, J., Fei, Y., Tae Hyung, K., Viet Thong, L., Hongyan, Y., Fethullah, G., Bing, L., Arunabha, G., Sishen, X., Young Hee, L.: Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23, 5074–5083 (2013)CrossRef Jian, C., Meihua, J., Fei, Y., Tae Hyung, K., Viet Thong, L., Hongyan, Y., Fethullah, G., Bing, L., Arunabha, G., Sishen, X., Young Hee, L.: Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23, 5074–5083 (2013)CrossRef
145.
go back to reference Sheng, C., Junwu, Z., Xiaodong, W., Qiaofeng, H., Xin, W.: Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)CrossRef Sheng, C., Junwu, Z., Xiaodong, W., Qiaofeng, H., Xin, W.: Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)CrossRef
146.
go back to reference Xiehong, C., Bing, Z., Wenhui, S., Jian, Y., Zhanxi, F., Zhimin, L., Xianhong, R., Chen, B., Qingyu, Y., Hua, Z.: Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695–4701 (2015)CrossRef Xiehong, C., Bing, Z., Wenhui, S., Jian, Y., Zhanxi, F., Zhimin, L., Xianhong, R., Chen, B., Qingyu, Y., Hua, Z.: Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695–4701 (2015)CrossRef
147.
go back to reference Alok, P., Abhijeet Sadashiv, G., Satyajit, R., Brahmananda, C., Chandra Sekhar, R.: Enhanced pseudocapacitance of MoO3-reduced graphene oxide hybrids with insight from density functional theory investigations. J. Phys. Chem. C 12, 18992–19001 (2017) Alok, P., Abhijeet Sadashiv, G., Satyajit, R., Brahmananda, C., Chandra Sekhar, R.: Enhanced pseudocapacitance of MoO3-reduced graphene oxide hybrids with insight from density functional theory investigations. J. Phys. Chem. C 12, 18992–19001 (2017)
148.
go back to reference Wujun, M., Shaohua, C., Shengyuan, Y., Wenping, C., Wei, W., Yanhua, C., Meifang, Z.: Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151–158 (2017)CrossRef Wujun, M., Shaohua, C., Shengyuan, Y., Wenping, C., Wei, W., Yanhua, C., Meifang, Z.: Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151–158 (2017)CrossRef
149.
go back to reference Kai, Z., Weijia, Z., Xiaojun, L., Yuanhua, S., Shaozheng, J., Wei, L., Jia, L., Ligui, L., Wenhan, N., Hong, L., Shaowei, C.: Ultrathin MoO3 nanocrystals self-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015)CrossRef Kai, Z., Weijia, Z., Xiaojun, L., Yuanhua, S., Shaozheng, J., Wei, L., Jia, L., Ligui, L., Wenhan, N., Hong, L., Shaowei, C.: Ultrathin MoO3 nanocrystals self-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015)CrossRef
Metadata
Title
Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors
Authors
Lakshmanan Karuppasamy
Lakshmanan Gurusamy
Gang-Juan Lee
Jerry J. Wu
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9057-0_1

Premium Partners