Skip to main content
Top
Published in: Rare Metals 2/2017

18-06-2016

Synthesis of nanoscale CeAl4 and its high catalytic efficiency for hydrogen storage of sodium alanate

Authors: Jian Sun, Xue-Zhang Xiao, Ze-Jun Zheng, Xiu-Lin Fan, Chen-Chen Xu, Lang-Xia Liu, Shou-Quan Li, Li-Xin Chen

Published in: Rare Metals | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoscale CeAl4 was directly synthesized by the thermal reaction between CeH2 and nano-aluminum at 300 °C. Then nano CeAl4-doped sodium alanate (NaAlH4) was synthesized by ball milling NaH/Al with 0.04CeAl4 under hydrogen atmosphere at room temperature, and the catalytic efficiency of nanoscale CeAl4 for hydrogen storage of NaAlH4 was systematically investigated. It is shown that CeAl4 can effectively improve the dehydrogenation properties of sodium alanate system. The 0.04CeAl4-doped NaAlH4 system starts to release hydrogen below 80 °C, completes dehydrogenation within 10 min at 170 °C, and exhibits good cycling de/hydrogenation kinetics at relatively lower temperature (100–140 °C). Apparent activation energy of the dehydrogenation of NaAlH4 can be effectively reduced by addition of CeAl4, resulting in the decrease in desorption temperatures. Moreover, by analyzing the reaction kinetics of nano CeAl4-doped NaAlH4 sample, both of the decomposition steps are conformed to a two-dimensional phase-boundary growth mechanism. The mechanistic investigations gained here can help to understand the de-/rehydrogenation behaviors of catalyzed complex metal hydride systems.

Graphical Abstract

Nanoscale CeAl4 was successfully synthesized and doped into NaAlH4 system ball milling NaH/Al + 0.04CeAl4. The addition of CeAl4 can effectively improve the dehydrogenation properties of NaAIH4, which starts to release hydrogen below 80 °C, completes dehydrogenation within 10 min at 170 °C, and exhibits good cycling de/hydrogenation kinetics at relatively lower temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353.CrossRef Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353.CrossRef
[2]
go back to reference Wang QD, Chen CP, Lei YY. The recent research, development and industrial applications of metal hydrides in the People's Republic of China. J Alloys Compds. 1997;253(5):629.CrossRef Wang QD, Chen CP, Lei YY. The recent research, development and industrial applications of metal hydrides in the People's Republic of China. J Alloys Compds. 1997;253(5):629.CrossRef
[3]
go back to reference Gray EM, Webb CJ, Andrews J, Shabani B, Tsai PJ, Chan SLI. Hydrogen storage for off-grid power supply. Int J Hydrog Energy. 2011;36(1):654.CrossRef Gray EM, Webb CJ, Andrews J, Shabani B, Tsai PJ, Chan SLI. Hydrogen storage for off-grid power supply. Int J Hydrog Energy. 2011;36(1):654.CrossRef
[4]
go back to reference Harries DN, Paskevicius M, Sheppard DA, Price TEC, Buckley CE. Concentrating solar thermal heat storage using metal hydrides. Proc IEEE. 2012;100(2):539.CrossRef Harries DN, Paskevicius M, Sheppard DA, Price TEC, Buckley CE. Concentrating solar thermal heat storage using metal hydrides. Proc IEEE. 2012;100(2):539.CrossRef
[5]
go back to reference Price TEC, Grant DM, Legrand V, Walker GS. Enhanced kinetics for the LiBH4:MgH2 multi-component hydrogen storage system–the effects of stoichiometry and decomposition environment on cycling behavior. Int J Hydrog Energy. 2010;35(9):4154.CrossRef Price TEC, Grant DM, Legrand V, Walker GS. Enhanced kinetics for the LiBH4:MgH2 multi-component hydrogen storage system–the effects of stoichiometry and decomposition environment on cycling behavior. Int J Hydrog Energy. 2010;35(9):4154.CrossRef
[6]
go back to reference Fichtner M. Complex aluminum hydrides for hydrogen storage. Ann Chim (Cachan, Fr.). 2005;30(5):483. Fichtner M. Complex aluminum hydrides for hydrogen storage. Ann Chim (Cachan, Fr.). 2005;30(5):483.
[7]
go back to reference Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.CrossRef Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.CrossRef
[8]
go back to reference Ashby EC, Kobetz P. The direct synthesis of Na3AlH6. Inorg Chem. 1966;5(9):1615.CrossRef Ashby EC, Kobetz P. The direct synthesis of Na3AlH6. Inorg Chem. 1966;5(9):1615.CrossRef
[9]
go back to reference Bellosta VC, Colbe JM, Schmidt W, Felderhoff M, Bogdanović B. Hydrogen-isotope scrambling on doped sodium alanate. Angew Chem A. 2006;45(22):3663.CrossRef Bellosta VC, Colbe JM, Schmidt W, Felderhoff M, Bogdanović B. Hydrogen-isotope scrambling on doped sodium alanate. Angew Chem A. 2006;45(22):3663.CrossRef
[10]
go back to reference Bogdanović B, Eberle U, Felderhoff M, Schüth F. Complex aluminum hydrides. Scrip Mater. 2007;56(10):813.CrossRef Bogdanović B, Eberle U, Felderhoff M, Schüth F. Complex aluminum hydrides. Scrip Mater. 2007;56(10):813.CrossRef
[11]
go back to reference Bogdanović B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compds. 1997;253(5):1.CrossRef Bogdanović B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compds. 1997;253(5):1.CrossRef
[12]
go back to reference Zidan RA, Takara S, Hee AG, Jensen CM. Hydrogen cycling behavior of zirconium and titanium–zirconium-doped sodium aluminum hydride. J Alloys Compds. 1999;285(1):119.CrossRef Zidan RA, Takara S, Hee AG, Jensen CM. Hydrogen cycling behavior of zirconium and titanium–zirconium-doped sodium aluminum hydride. J Alloys Compds. 1999;285(1):119.CrossRef
[13]
go back to reference Resan M, Hampton MD, Lomness JK, Slattery DK. Effect of Ti x Al y catalysts on hydrogen storage properties of LiAlH4 and NaAlH4. Int J Hydrog Energy. 2005;30(13):1417.CrossRef Resan M, Hampton MD, Lomness JK, Slattery DK. Effect of Ti x Al y catalysts on hydrogen storage properties of LiAlH4 and NaAlH4. Int J Hydrog Energy. 2005;30(13):1417.CrossRef
[14]
go back to reference Jensen CM, Zidan R, Mariels N, Hee A, Hagen C. Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material. Int J Hydrog Energy. 1999;24(5):461.CrossRef Jensen CM, Zidan R, Mariels N, Hee A, Hagen C. Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material. Int J Hydrog Energy. 1999;24(5):461.CrossRef
[15]
go back to reference Lee GJ, Shim JH, Cho YW, Lee KS. Improvement in desorption kinetics of NaAlH4 catalyzed with TiO2 nanopowder. Int J Hydrog Energy. 2008;33(14):3748.CrossRef Lee GJ, Shim JH, Cho YW, Lee KS. Improvement in desorption kinetics of NaAlH4 catalyzed with TiO2 nanopowder. Int J Hydrog Energy. 2008;33(14):3748.CrossRef
[16]
go back to reference Xiao XZ, Chen LX, Wang X, Wang QD, Chen CP. The hydrogen storage properties and microstructure of Ti-doped sodium aluminum hydride prepared by ball-milling. Int J Hydrog Energy. 2007;32(13):2475.CrossRef Xiao XZ, Chen LX, Wang X, Wang QD, Chen CP. The hydrogen storage properties and microstructure of Ti-doped sodium aluminum hydride prepared by ball-milling. Int J Hydrog Energy. 2007;32(13):2475.CrossRef
[17]
go back to reference Xiao XZ, Chen LX, Wang X, Li S, Wang QD, Chen CP. Influence of temperature and hydrogen pressure on the hydriding/dehydriding behavior of Ti-doped sodium aluminum hydride. Int J Hydrog Energy. 2007;32(16):3954.CrossRef Xiao XZ, Chen LX, Wang X, Li S, Wang QD, Chen CP. Influence of temperature and hydrogen pressure on the hydriding/dehydriding behavior of Ti-doped sodium aluminum hydride. Int J Hydrog Energy. 2007;32(16):3954.CrossRef
[18]
go back to reference Hu J, Ren S, Witter R, Fichtner M. Catalytic influence of various cerium precursors on the hydrogen sorption properties of NaAlH4. Adv Energ Mater. 2012;2(5):560.CrossRef Hu J, Ren S, Witter R, Fichtner M. Catalytic influence of various cerium precursors on the hydrogen sorption properties of NaAlH4. Adv Energ Mater. 2012;2(5):560.CrossRef
[19]
go back to reference Arnbjerg LM, Jensen TR. New compounds in the potassium-aluminium-hydrogen system observed during release and uptake of hydrogen. Int J Hydrog Energy. 2012;37(1):345.CrossRef Arnbjerg LM, Jensen TR. New compounds in the potassium-aluminium-hydrogen system observed during release and uptake of hydrogen. Int J Hydrog Energy. 2012;37(1):345.CrossRef
[20]
go back to reference Pitt MP, Paskevicius M, Webb CJ, Sorby MH, Delleda S, Jensen TR, Hauback BC, Buckley CE, Ma E, Graya A. Nanoscale Al1 −x Ce x phases in the NaH + Al + 0.02CeCl3 system. Int J Hydrog Energy. 2011;36(14):8403.CrossRef Pitt MP, Paskevicius M, Webb CJ, Sorby MH, Delleda S, Jensen TR, Hauback BC, Buckley CE, Ma E, Graya A. Nanoscale Al1 x Ce x phases in the NaH + Al + 0.02CeCl3 system. Int J Hydrog Energy. 2011;36(14):8403.CrossRef
[21]
go back to reference Bogdanović B, Felderhoff M, Pommerin A, Schüth F, Spielkamp N, Stark A. Cycling propertiers of Sc- and Ce-doped NaAlH4 hydrogen storage materials prepared by the one-step direct synthesis method. J Alloys Compds. 2009;471(1):383.CrossRef Bogdanović B, Felderhoff M, Pommerin A, Schüth F, Spielkamp N, Stark A. Cycling propertiers of Sc- and Ce-doped NaAlH4 hydrogen storage materials prepared by the one-step direct synthesis method. J Alloys Compds. 2009;471(1):383.CrossRef
[22]
go back to reference Léon A, Rothe J, Chłopek K, Zabara O, Fichtner M. Fluorescence XAFS study of NaAlH4 doped with a Ce-based precursor. Phys Chem Chem Phys. 2009;11(39):8829.CrossRef Léon A, Rothe J, Chłopek K, Zabara O, Fichtner M. Fluorescence XAFS study of NaAlH4 doped with a Ce-based precursor. Phys Chem Chem Phys. 2009;11(39):8829.CrossRef
[23]
go back to reference Delmelle R, Gehrig JC, Borgschulte A, Züttel A. Reactivity enhancement of oxide skins in reversible Ti-doped NaAlH4. AIP Adv. 2014;4(12):127130.CrossRef Delmelle R, Gehrig JC, Borgschulte A, Züttel A. Reactivity enhancement of oxide skins in reversible Ti-doped NaAlH4. AIP Adv. 2014;4(12):127130.CrossRef
[24]
go back to reference Fan XL, Xiao XZ, Chen LX, Yu K, Wu Z, Li SQ, Wang QD. Active species of CeAl4 in the CeCl3-doped sodium aluminium hydride and its enhancement on reversible hydrogen storage performance. Chem Commun. 2009;10(44):6857.CrossRef Fan XL, Xiao XZ, Chen LX, Yu K, Wu Z, Li SQ, Wang QD. Active species of CeAl4 in the CeCl3-doped sodium aluminium hydride and its enhancement on reversible hydrogen storage performance. Chem Commun. 2009;10(44):6857.CrossRef
[25]
go back to reference Pitt MP, Vullum PE, Sorby MH, Emerich H, Paskevicius M. Hydroen absorption kinetics and structural features of NaAlH4 enhanced with transition-metal and Ti-based nanoparticles. Int J Hydrog Energy. 2012;37(20):15175.CrossRef Pitt MP, Vullum PE, Sorby MH, Emerich H, Paskevicius M. Hydroen absorption kinetics and structural features of NaAlH4 enhanced with transition-metal and Ti-based nanoparticles. Int J Hydrog Energy. 2012;37(20):15175.CrossRef
[26]
go back to reference Bösenberg U, Doppiu S, Mosegaard L, Barkhordarian G, Eigen N, Borgschulte A, Jensen TR, Cerenius Y, Gutfleisch O, Klassen T, Dornheim M, Bormann R. Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Mater. 2007;55(11):3951.CrossRef Bösenberg U, Doppiu S, Mosegaard L, Barkhordarian G, Eigen N, Borgschulte A, Jensen TR, Cerenius Y, Gutfleisch O, Klassen T, Dornheim M, Bormann R. Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Mater. 2007;55(11):3951.CrossRef
[27]
go back to reference Fan XL, Xiao XZ, Chen LX, Han LY, Li SQ, Ge HW, Wang QD. Hydriding-dehydriding kinetics and the microstructure of La-and Sm-doped NaAlH4 prepared via direct synthesis method. Int J Hydrog Energy. 2011;36(17):10861.CrossRef Fan XL, Xiao XZ, Chen LX, Han LY, Li SQ, Ge HW, Wang QD. Hydriding-dehydriding kinetics and the microstructure of La-and Sm-doped NaAlH4 prepared via direct synthesis method. Int J Hydrog Energy. 2011;36(17):10861.CrossRef
[28]
go back to reference Mauron P, Bielmann M, Remhof A, Zuttel A, Shim JH, Cho YW. Stability of the LiBH4/CeH2 composite system determined by dynamic PCT measurements. J Phys Chem C. 2010;114(39):16801.CrossRef Mauron P, Bielmann M, Remhof A, Zuttel A, Shim JH, Cho YW. Stability of the LiBH4/CeH2 composite system determined by dynamic PCT measurements. J Phys Chem C. 2010;114(39):16801.CrossRef
[29]
go back to reference Thomas GJ, Gross KJ, Yang NYC, Jensen C. Microstructural characterization of catalyzed NaAlH4. J Alloys Compds. 2002;330(1):702.CrossRef Thomas GJ, Gross KJ, Yang NYC, Jensen C. Microstructural characterization of catalyzed NaAlH4. J Alloys Compds. 2002;330(1):702.CrossRef
[30]
go back to reference Xiao XZ, Fan XL, Yu K, Li SQ, Chen CP, Wang QD, Chen LX. Catalytic mechanism of new TiC-doped sodium alanate for hydrogen storage. J Phys Chem C. 2009;113(48):20745.CrossRef Xiao XZ, Fan XL, Yu K, Li SQ, Chen CP, Wang QD, Chen LX. Catalytic mechanism of new TiC-doped sodium alanate for hydrogen storage. J Phys Chem C. 2009;113(48):20745.CrossRef
[31]
go back to reference Fan XL, Xiao XZ, Chen LX, Han LY, Li SQ, Ge HW, Wang QD. Thermodynamics, kinetics, and modeling investigation on the dehydrogenation of CeAl4-doped NaAlH4 hydrogen storage material. J Phys Chem C. 2011;115(45):22680.CrossRef Fan XL, Xiao XZ, Chen LX, Han LY, Li SQ, Ge HW, Wang QD. Thermodynamics, kinetics, and modeling investigation on the dehydrogenation of CeAl4-doped NaAlH4 hydrogen storage material. J Phys Chem C. 2011;115(45):22680.CrossRef
[32]
go back to reference Avrami M. Kinetics of phase change I general theory. J Chem Phys. 1939;7(12):1103.CrossRef Avrami M. Kinetics of phase change I general theory. J Chem Phys. 1939;7(12):1103.CrossRef
[33]
go back to reference Avrami M. Kinetics of phase change III granulation, phase change, and microstructure. J Chem Phys. 1941;9(2):177.CrossRef Avrami M. Kinetics of phase change III granulation, phase change, and microstructure. J Chem Phys. 1941;9(2):177.CrossRef
[34]
go back to reference Johnson A, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135(8):396. Johnson A, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135(8):396.
[35]
go back to reference Hancock J, Sharp J. Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J Am Ceram Soc. 1972;55(2):74.CrossRef Hancock J, Sharp J. Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J Am Ceram Soc. 1972;55(2):74.CrossRef
[36]
go back to reference Lozano GA, Ranong CN, von Colbe JMB, Bormann R, Georg FB, Hapke J, Dornheim M. Empirical kinetic model of sodium alanate reacting system (II) hydrogen desorption. Int J Hydrog Energy. 2010;35(14):7539.CrossRef Lozano GA, Ranong CN, von Colbe JMB, Bormann R, Georg FB, Hapke J, Dornheim M. Empirical kinetic model of sodium alanate reacting system (II) hydrogen desorption. Int J Hydrog Energy. 2010;35(14):7539.CrossRef
Metadata
Title
Synthesis of nanoscale CeAl4 and its high catalytic efficiency for hydrogen storage of sodium alanate
Authors
Jian Sun
Xue-Zhang Xiao
Ze-Jun Zheng
Xiu-Lin Fan
Chen-Chen Xu
Lang-Xia Liu
Shou-Quan Li
Li-Xin Chen
Publication date
18-06-2016
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 2/2017
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0743-2

Other articles of this Issue 2/2017

Rare Metals 2/2017 Go to the issue

Premium Partners