Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2021

29-03-2021 | Research Article-Electrical Engineering

System Identification and Control Design of a Wireless Charging Transfer System with Double-Sided LCC Converter

Authors: Ahmad Siroos, Mostafa Sedighizadeh, Ebrahim Afjei, Alireza Sheikhi Fini, Somayeh Yarkarami

Published in: Arabian Journal for Science and Engineering | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Increasing production of electric vehicles (EVs) and the challenge of charging these types of vehicles have been one of the most important research topics in the current century. Due to the low-battery energy density of EVs (compared to fuel) as well as the long time required to charge EVs, wireless power transfer (WPT) technology is an interesting topic researched in recent years. The WPT system in EVs can be studied in both static and dynamic scenarios. In this study, symmetrical circular couplers are first presented as system magnetic couplers and their magnetic calculations are analyzed using finite element method. Then, a new approach is proposed to design the power electronic circuits of the WPT, including a double-sided LCC compensator, and providing an approximation for calculating the ratio of output to input voltage. This method shows how to select the appropriate values of the passive elements for high system efficiency that can meet the output power and voltage. Firstly, the efficacy of the proposed approach is confirmed by experimental and simulation results. Then, using the input control of inverter MOSFETs through pulse width modulation method and proportional integral controller, the output voltage of the system is kept constant while increasing or decreasing the input voltage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference Sugino, M.; Kondo, H.; Takeda, S.: Linear motion type transfer robot using the wireless power transfer system. In: 2016 International Symposium on Antennas and Propagation (ISAP), 24–28 Oct, pp. 508–509 (2016) Sugino, M.; Kondo, H.; Takeda, S.: Linear motion type transfer robot using the wireless power transfer system. In: 2016 International Symposium on Antennas and Propagation (ISAP), 24–28 Oct, pp. 508–509 (2016)
8.
go back to reference Liao, C.-C.; Huang, M.-S.; Li, Z.-F.; Lin, F.-J.; Wu, W.-T.: Simulation-assisted design of a bidirectional wireless power transfer with circular sandwich coils for E-bike sharing system. IEEE Access 8, 110003–110017 (2020)CrossRef Liao, C.-C.; Huang, M.-S.; Li, Z.-F.; Lin, F.-J.; Wu, W.-T.: Simulation-assisted design of a bidirectional wireless power transfer with circular sandwich coils for E-bike sharing system. IEEE Access 8, 110003–110017 (2020)CrossRef
9.
go back to reference Panchal, C.; Stegen, S.; Lu, J.: Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 21(5), 922–937 (2018) Panchal, C.; Stegen, S.; Lu, J.: Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 21(5), 922–937 (2018)
10.
go back to reference Mohamed, A.A.; Shaier, A.A.; Metwally, H.; Selem, S.I.: A comprehensive overview of inductive pad in electric vehicles stationary charging. Appl. Energy 262, 114584 (2020)CrossRef Mohamed, A.A.; Shaier, A.A.; Metwally, H.; Selem, S.I.: A comprehensive overview of inductive pad in electric vehicles stationary charging. Appl. Energy 262, 114584 (2020)CrossRef
11.
go back to reference Subudhi, P.S.; Krithiga, S.: Wireless power transfer topologies used for static and dynamic charging of EV battery: a review. Int. J. Emerg. Electr. Power Syst. 21(1), 1–10 (2020) Subudhi, P.S.; Krithiga, S.: Wireless power transfer topologies used for static and dynamic charging of EV battery: a review. Int. J. Emerg. Electr. Power Syst. 21(1), 1–10 (2020)
12.
go back to reference Ke, G.; Chen, Q.; Xu, L.; Wong, S.-C.; Chi, K.T.: A model for coupling under coil misalignment for DD pads and circular pads of WPT system. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1–6. IEEE (2016) Ke, G.; Chen, Q.; Xu, L.; Wong, S.-C.; Chi, K.T.: A model for coupling under coil misalignment for DD pads and circular pads of WPT system. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1–6. IEEE (2016)
13.
go back to reference Agbinya, J.I.; Mohamed, N.F.A.: Design and study of multi-dimensional wireless power transfer transmission systems and architectures. Int. J. Electr. Power Energy Syst. 63, 1047–1056 (2014)CrossRef Agbinya, J.I.; Mohamed, N.F.A.: Design and study of multi-dimensional wireless power transfer transmission systems and architectures. Int. J. Electr. Power Energy Syst. 63, 1047–1056 (2014)CrossRef
14.
go back to reference Kuzey, S.; Balci, S.; Altin, N.: Design and analysis of a wireless power transfer system with alignment errors for electrical vehicle applications. Int. J. Hydrogen Energy 42(28), 17928–17939 (2017)CrossRef Kuzey, S.; Balci, S.; Altin, N.: Design and analysis of a wireless power transfer system with alignment errors for electrical vehicle applications. Int. J. Hydrogen Energy 42(28), 17928–17939 (2017)CrossRef
15.
go back to reference Shi, Y.; Zhang, Y.; Shen, M.; Fan, Y.; Wang, C.; Wang, M.: Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling. AEU-Int. J. Electron. Commun. 95, 236–241 (2018)CrossRef Shi, Y.; Zhang, Y.; Shen, M.; Fan, Y.; Wang, C.; Wang, M.: Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling. AEU-Int. J. Electron. Commun. 95, 236–241 (2018)CrossRef
16.
go back to reference Xu, J.; Xu, Y.; Zhang, Q.: Calculation and analysis of optimal design for wireless power transfer. Comput. Electr. Eng. 80, 106470 (2019)CrossRef Xu, J.; Xu, Y.; Zhang, Q.: Calculation and analysis of optimal design for wireless power transfer. Comput. Electr. Eng. 80, 106470 (2019)CrossRef
17.
go back to reference Fujita, T.; Yasuda, T.; Akagi, H.: A dynamic wireless power transfer system applicable to a stationary system. IEEE Trans. Ind. Appl. 53(4), 3748–3757 (2017)CrossRef Fujita, T.; Yasuda, T.; Akagi, H.: A dynamic wireless power transfer system applicable to a stationary system. IEEE Trans. Ind. Appl. 53(4), 3748–3757 (2017)CrossRef
18.
go back to reference Li, Z.; Zhu, C.; Jiang, J.; Song, K.; Wei, G.: A 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 32(5), 3301–3316 (2016)CrossRef Li, Z.; Zhu, C.; Jiang, J.; Song, K.; Wei, G.: A 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 32(5), 3301–3316 (2016)CrossRef
19.
go back to reference Wang, Z., et al.: A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles. IEEE Trans. Veh. Technol. 67(1), 124–133 (2017)CrossRef Wang, Z., et al.: A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles. IEEE Trans. Veh. Technol. 67(1), 124–133 (2017)CrossRef
20.
go back to reference Wang, S.; Guo, Y.; Dorrell, D.: Analysis of rectangular EV inductive charging coupler. In: 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 285–291. IEEE (2017) Wang, S.; Guo, Y.; Dorrell, D.: Analysis of rectangular EV inductive charging coupler. In: 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 285–291. IEEE (2017)
21.
go back to reference Li, Y.; Lin, T.; Mai, R.; Huang, L.; He, Z.: Compact double-sided decoupled coils-based WPT systems for high-power applications: analysis, design, and experimental verification. IEEE Trans. Transp. Electrif. 4(1), 64–75 (2017)CrossRef Li, Y.; Lin, T.; Mai, R.; Huang, L.; He, Z.: Compact double-sided decoupled coils-based WPT systems for high-power applications: analysis, design, and experimental verification. IEEE Trans. Transp. Electrif. 4(1), 64–75 (2017)CrossRef
22.
go back to reference Mosammam, B.M.; Mirsalim, M.; Khorsandi, A.: Modelling, analysis, and SS compensation of the tripolar structure of wireless power transfer (WPT) system for EV applications. In: 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1–5. IEEE (2020) Mosammam, B.M.; Mirsalim, M.; Khorsandi, A.: Modelling, analysis, and SS compensation of the tripolar structure of wireless power transfer (WPT) system for EV applications. In: 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1–5. IEEE (2020)
23.
go back to reference Kim, D.-H.; Ahn, D.: Self-tuning LCC inverter using PWM-controlled switched capacitor for inductive wireless power transfer. IEEE Trans. Ind. Electron. 66(5), 3983–3992 (2018)CrossRef Kim, D.-H.; Ahn, D.: Self-tuning LCC inverter using PWM-controlled switched capacitor for inductive wireless power transfer. IEEE Trans. Ind. Electron. 66(5), 3983–3992 (2018)CrossRef
24.
go back to reference Kan, T.; Mai, R.; Mercier, P.P.; Mi, C.C.: Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Power Electron. 33(8), 6622–6632 (2017)CrossRef Kan, T.; Mai, R.; Mercier, P.P.; Mi, C.C.: Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Power Electron. 33(8), 6622–6632 (2017)CrossRef
25.
go back to reference Zhang, Y.; Wang, L.; Guo, Y.; Tao, C.: Null-coupled magnetic integration for EV wireless power transfer system. IEEE Trans. Transp. Electrif. 5(4), 968–976 (2019)CrossRef Zhang, Y.; Wang, L.; Guo, Y.; Tao, C.: Null-coupled magnetic integration for EV wireless power transfer system. IEEE Trans. Transp. Electrif. 5(4), 968–976 (2019)CrossRef
26.
go back to reference Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C.: A dynamic charging system with reduced output power pulsation for electric vehicles. IEEE Trans. Ind. Electron. 63(10), 6580–6590 (2016)CrossRef Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C.: A dynamic charging system with reduced output power pulsation for electric vehicles. IEEE Trans. Ind. Electron. 63(10), 6580–6590 (2016)CrossRef
27.
go back to reference Chen, Y.; Zhang, H.; Shin, C.-S.; Jo, C.-H.; Park, S.-J.; Kim, D.-H.: An efficiency optimization-based asymmetric tuning method of double-sided LCC compensated WPT system for electric vehicles. IEEE Trans. Power Electron. 35(11), 11475–11487 (2020)CrossRef Chen, Y.; Zhang, H.; Shin, C.-S.; Jo, C.-H.; Park, S.-J.; Kim, D.-H.: An efficiency optimization-based asymmetric tuning method of double-sided LCC compensated WPT system for electric vehicles. IEEE Trans. Power Electron. 35(11), 11475–11487 (2020)CrossRef
28.
go back to reference Li, S.; Guo, Y.; Tao, C.; Li, F.; Wang, L.; Bo, Q.: Analysis of the input impedance of the rectifier and design of LCC compensation network of the dynamic wireless power transfer system. IET Power Electron. 12(10), 2678–2687 (2019)CrossRef Li, S.; Guo, Y.; Tao, C.; Li, F.; Wang, L.; Bo, Q.: Analysis of the input impedance of the rectifier and design of LCC compensation network of the dynamic wireless power transfer system. IET Power Electron. 12(10), 2678–2687 (2019)CrossRef
29.
go back to reference Zhang, X.; Kan, T.; You, C.; Mi, C.: Modeling and analysis of AC output power factor for wireless chargers in electric vehicles. IEEE Trans. Power Electron. 32(2), 1481–1492 (2016)CrossRef Zhang, X.; Kan, T.; You, C.; Mi, C.: Modeling and analysis of AC output power factor for wireless chargers in electric vehicles. IEEE Trans. Power Electron. 32(2), 1481–1492 (2016)CrossRef
30.
go back to reference Zhang, Y.; Yan, Z.; Kan, T.; Liu, Y.; Mi, C.C.: Modelling and analysis of the distortion of strongly-coupled wireless power transfer systems with SS and LCC–LCC compensations. IET Power Electron. 12(6), 1321–1328 (2019)CrossRef Zhang, Y.; Yan, Z.; Kan, T.; Liu, Y.; Mi, C.C.: Modelling and analysis of the distortion of strongly-coupled wireless power transfer systems with SS and LCC–LCC compensations. IET Power Electron. 12(6), 1321–1328 (2019)CrossRef
31.
go back to reference Samanta, S.; Rathore, A.K.: A new current-fed CLC transmitter and LC receiver topology for inductive wireless power transfer application: analysis, design, and experimental results. IEEE Trans. Transp. Electrif. 1(4), 357–368 (2015)CrossRef Samanta, S.; Rathore, A.K.: A new current-fed CLC transmitter and LC receiver topology for inductive wireless power transfer application: analysis, design, and experimental results. IEEE Trans. Transp. Electrif. 1(4), 357–368 (2015)CrossRef
32.
go back to reference Kan, T.; Zhang, Y.; Yan, Z.; Mercier, P.P.; Mi, C.C.: A rotation-resilient wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Veh. Technol. 67(8), 6935–6942 (2018)CrossRef Kan, T.; Zhang, Y.; Yan, Z.; Mercier, P.P.; Mi, C.C.: A rotation-resilient wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Veh. Technol. 67(8), 6935–6942 (2018)CrossRef
33.
go back to reference Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C.: An inductive and capacitive combined wireless power transfer system with LC-compensated topology. IEEE Trans. Power Electron. 31(12), 8471–8482 (2016)CrossRef Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C.: An inductive and capacitive combined wireless power transfer system with LC-compensated topology. IEEE Trans. Power Electron. 31(12), 8471–8482 (2016)CrossRef
34.
go back to reference Khademi, H.R.; Moghaddam, M.S.; Baygi, S.J.M.; Hajizadeh, A.: A new method for an electric vehicle wireless charging system using LCC. Adv. Sci. Technol. Res. J. 13(3), 98–112 (2019)CrossRef Khademi, H.R.; Moghaddam, M.S.; Baygi, S.J.M.; Hajizadeh, A.: A new method for an electric vehicle wireless charging system using LCC. Adv. Sci. Technol. Res. J. 13(3), 98–112 (2019)CrossRef
35.
go back to reference Liu, H., et al.: Flexible power control for wireless power transmission system with unfixed receiver position. IEEE Access 7, 181767–181777 (2019)CrossRef Liu, H., et al.: Flexible power control for wireless power transmission system with unfixed receiver position. IEEE Access 7, 181767–181777 (2019)CrossRef
36.
go back to reference Hu, X.; Wang, Y.; Jiang, Y.; Lei, W.; Dong, X.: Maximum efficiency tracking for dynamic wireless power transfer system using LCC compensation topology. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1992–1996. IEEE (2018) Hu, X.; Wang, Y.; Jiang, Y.; Lei, W.; Dong, X.: Maximum efficiency tracking for dynamic wireless power transfer system using LCC compensation topology. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1992–1996. IEEE (2018)
37.
go back to reference Jiang, J.; Li, Z.; Song, K.; Song, B.; Dong, S.; Zhu, C.: A cascaded topology and control method for two-phase receivers of dynamic wireless power transfer systems. IEEE Access 8, 47445–47455 (2020)CrossRef Jiang, J.; Li, Z.; Song, K.; Song, B.; Dong, S.; Zhu, C.: A cascaded topology and control method for two-phase receivers of dynamic wireless power transfer systems. IEEE Access 8, 47445–47455 (2020)CrossRef
38.
go back to reference Ahmad, A.; Alam, M.S.; Rafat, Y.; Shariff, S.: Designing and demonstration of misalignment reduction for wireless charging of autonomous electric vehicle. eTransportation 4, 100052 (2020)CrossRef Ahmad, A.; Alam, M.S.; Rafat, Y.; Shariff, S.: Designing and demonstration of misalignment reduction for wireless charging of autonomous electric vehicle. eTransportation 4, 100052 (2020)CrossRef
39.
go back to reference Zhang, B.; Carlson, R.B.; Smart, J.G.; Dufek, E.J.; Liaw, B.: Challenges of future high power wireless power transfer for light-duty electric vehicles––technology and risk management. eTransportation 2, 100012 (2019)CrossRef Zhang, B.; Carlson, R.B.; Smart, J.G.; Dufek, E.J.; Liaw, B.: Challenges of future high power wireless power transfer for light-duty electric vehicles––technology and risk management. eTransportation 2, 100012 (2019)CrossRef
40.
go back to reference Parvaneh, H.; Dizgah, S.M.; Sedighizadeh, M.; Ardeshir, S.T.: Load frequency control of a multi-area power system by optimum designing of frequency-based PID controller using seeker optimization algorithm. In: 2016 6th Conference on Thermal Power Plants (CTPP), pp. 52–57. IEEE (2016) Parvaneh, H.; Dizgah, S.M.; Sedighizadeh, M.; Ardeshir, S.T.: Load frequency control of a multi-area power system by optimum designing of frequency-based PID controller using seeker optimization algorithm. In: 2016 6th Conference on Thermal Power Plants (CTPP), pp. 52–57. IEEE (2016)
Metadata
Title
System Identification and Control Design of a Wireless Charging Transfer System with Double-Sided LCC Converter
Authors
Ahmad Siroos
Mostafa Sedighizadeh
Ebrahim Afjei
Alireza Sheikhi Fini
Somayeh Yarkarami
Publication date
29-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05548-0

Other articles of this Issue 10/2021

Arabian Journal for Science and Engineering 10/2021 Go to the issue

Premium Partners