Skip to main content
Top
Published in: Telecommunication Systems 3/2020

18-09-2019

System reliability analysis of small-cell deployment in heterogeneous cellular networks

Authors: Ali Muhammad Ali Rushdi, Ahmad Kamal Hassan, Muhammad Moinuddin

Published in: Telecommunication Systems | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper exhibits a primer on the use of modern system reliability techniques on several important topologies of small-cell deployment in multi-tier dense cellular networks. We synthesize a network into several subnetworks and use outage probability as a performance metric to formulate the small-cell deployment problem in the Boolean domain by means of an indicator function. The methodology employed herein includes disjointness for logically added expressions, arriving at a probability ready expression, and a transformation to the probability domain on a one-to-one basis by replacing indicator Boolean variables by their expectations and replacing logical operations by their arithmetical counterparts. This work also presents a systematic procedure of computing several reliability metrics such as the useful redundancy region, mean-time-to-failure, importance measures of the links, and quantification of uncertainty in system reliability as a function of uncertainties in link reliabilities by considering both identical and non-identical link failures. Non-linear algorithms are also tested on the optimization problem that minimizes system unreliability. We contribute to the important issue of analyzing small-cell deployment by providing exact system reliability metrics and hence open a new frontier for software defined networks controllers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anonymous. (2019). Global mobile data traffic forecast update, 2017–2022 (Cisco Visual Networking Index), White Paper. Anonymous. (2019). Global mobile data traffic forecast update, 2017–2022 (Cisco Visual Networking Index), White Paper.
2.
go back to reference Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef
3.
go back to reference Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRef Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRef
4.
go back to reference Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communication Magazine, 52(5), 86–92.CrossRef Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communication Magazine, 52(5), 86–92.CrossRef
5.
go back to reference Parkvall, S., Dahlman, E., Jöngren, G., Landström, S., & Lindbom, L. (2011) Heterogeneous network deployments in LTE—The soft-cell approach. Ericsson Review 2 Parkvall, S., Dahlman, E., Jöngren, G., Landström, S., & Lindbom, L. (2011) Heterogeneous network deployments in LTE—The soft-cell approach. Ericsson Review 2
6.
go back to reference Liu, C., Natarajan, B., & Xia, H. (2016). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology, 65(3), 1652–1661.CrossRef Liu, C., Natarajan, B., & Xia, H. (2016). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology, 65(3), 1652–1661.CrossRef
7.
go back to reference Zhang, G., Quek, T. Q. S., Huang, A., Kountouris, M., & Shan, H. (2015). Backhaul-aware base station association in two-tier heterogeneous cellular networks. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC). Stockholm (pp. 390–394). Zhang, G., Quek, T. Q. S., Huang, A., Kountouris, M., & Shan, H. (2015). Backhaul-aware base station association in two-tier heterogeneous cellular networks. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC). Stockholm (pp. 390–394).
8.
go back to reference Zhang, G., Quek, T. Q. S., Huang, A., & Shan, H. (2016). Delay and reliability tradeoffs in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 15(2), 1101–1113.CrossRef Zhang, G., Quek, T. Q. S., Huang, A., & Shan, H. (2016). Delay and reliability tradeoffs in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 15(2), 1101–1113.CrossRef
9.
go back to reference Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.CrossRef Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.CrossRef
10.
go back to reference Siddique, U., Tabassum, H., Hossain, E., & Kim, D. I. (2015). Wireless backhauling of 5G small cells: Challenges and solution approaches. IEEE Wireless Communications, 22(5), 22–31.CrossRef Siddique, U., Tabassum, H., Hossain, E., & Kim, D. I. (2015). Wireless backhauling of 5G small cells: Challenges and solution approaches. IEEE Wireless Communications, 22(5), 22–31.CrossRef
11.
go back to reference Moore, E. F., & Shannon, C. E. (1956). Reliable circuits using less reliable relays. Journal of The Franklin Institute, 262(3), 191–208.CrossRef Moore, E. F., & Shannon, C. E. (1956). Reliable circuits using less reliable relays. Journal of The Franklin Institute, 262(3), 191–208.CrossRef
12.
go back to reference Bennetts, R. G. (1975). On the analysis of fault trees. IEEE Transactions on Reliability, 24(3), 175–185.CrossRef Bennetts, R. G. (1975). On the analysis of fault trees. IEEE Transactions on Reliability, 24(3), 175–185.CrossRef
13.
go back to reference Bennetts, R. G. (1982). Analysis of reliability block diagrams by Boolean techniques. IEEE Transactions on Reliability, 31(2), 159–166.CrossRef Bennetts, R. G. (1982). Analysis of reliability block diagrams by Boolean techniques. IEEE Transactions on Reliability, 31(2), 159–166.CrossRef
14.
go back to reference Kuo, W., & Zuo, M. J. (2003). Optimal reliability modeling: Principles and applications. Hoboken: Wiley. Kuo, W., & Zuo, M. J. (2003). Optimal reliability modeling: Principles and applications. Hoboken: Wiley.
15.
go back to reference Misra, K. B. (Ed.). (2008). Handbook of performability engineering. London: Springer. Misra, K. B. (Ed.). (2008). Handbook of performability engineering. London: Springer.
16.
go back to reference Rushdi, A. M. A., & Hassan, A. K. (2015). Reliability of migration between habitat patches with heterogeneous ecological corridors. Ecological Modelling, 304, 1–10.CrossRef Rushdi, A. M. A., & Hassan, A. K. (2015). Reliability of migration between habitat patches with heterogeneous ecological corridors. Ecological Modelling, 304, 1–10.CrossRef
17.
go back to reference Rushdi, A. M. A., & Hassan, A. K. (2016). An exposition of system reliability analysis with an ecological perspective. Ecological Indicators, 63, 282–295.CrossRef Rushdi, A. M. A., & Hassan, A. K. (2016). An exposition of system reliability analysis with an ecological perspective. Ecological Indicators, 63, 282–295.CrossRef
18.
go back to reference Rushdi, A. M., & Rushdi, M. A. (2017). Switching-algebraic analysis of system reliability, chapter 6. In M. Ram & P. Davim (Eds.), Advances in reliability and system engineering, management and industrial engineering series (pp. 139–161). Cham: Springer.CrossRef Rushdi, A. M., & Rushdi, M. A. (2017). Switching-algebraic analysis of system reliability, chapter 6. In M. Ram & P. Davim (Eds.), Advances in reliability and system engineering, management and industrial engineering series (pp. 139–161). Cham: Springer.CrossRef
19.
go back to reference Ryabinin, I. A. (2015). Logical probabilistic analysis and its history. International Journal of Risk Assessment and Management, 18(3-4), 256–265.CrossRef Ryabinin, I. A. (2015). Logical probabilistic analysis and its history. International Journal of Risk Assessment and Management, 18(3-4), 256–265.CrossRef
20.
go back to reference Premo, A. F. (1963). The use of Boolean algebra and a truth table in the formulation of a mathematical model of success. IEEE Transactions on Reliability, 12(3), 45–49.CrossRef Premo, A. F. (1963). The use of Boolean algebra and a truth table in the formulation of a mathematical model of success. IEEE Transactions on Reliability, 12(3), 45–49.CrossRef
21.
go back to reference Fratta, L., & Montanari, U. (1973). A Boolean algebra method for computing the terminal reliability in a communication network. IEEE Transactions on Circuit Theory, 20(3), 203–211.CrossRef Fratta, L., & Montanari, U. (1973). A Boolean algebra method for computing the terminal reliability in a communication network. IEEE Transactions on Circuit Theory, 20(3), 203–211.CrossRef
22.
go back to reference Tabassum, H., Sakr, A. H., & Hossain, E. (2016). Analysis of Massive MIMO-enabled downlink wireless backhauling for full-duplex small cells. IEEE Transactions on Communications, 64(6), 2354–2369.CrossRef Tabassum, H., Sakr, A. H., & Hossain, E. (2016). Analysis of Massive MIMO-enabled downlink wireless backhauling for full-duplex small cells. IEEE Transactions on Communications, 64(6), 2354–2369.CrossRef
23.
go back to reference Aurenhammer, F. (1991). Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23(3), 345–405.CrossRef Aurenhammer, F. (1991). Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23(3), 345–405.CrossRef
24.
go back to reference ElSawy, H., Hossain, E., & Haenggi, M. (2013). Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey. IEEE Communications Surveys and Tutorials, 15(3), 996–1019.CrossRef ElSawy, H., Hossain, E., & Haenggi, M. (2013). Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey. IEEE Communications Surveys and Tutorials, 15(3), 996–1019.CrossRef
25.
go back to reference Lee, N., Morales-Jimenez, D., Lozano, A., & Heath, R. W. (2015). Spectral efficiency of dynamic coordinated beamforming: A stochastic geometry approach. IEEE Transactions on Wireless Communications, 14(1), 230–241.CrossRef Lee, N., Morales-Jimenez, D., Lozano, A., & Heath, R. W. (2015). Spectral efficiency of dynamic coordinated beamforming: A stochastic geometry approach. IEEE Transactions on Wireless Communications, 14(1), 230–241.CrossRef
26.
go back to reference Hassan, A. K., Moinuddin, M., & Al-Saggaf, U. M. (2018). On modeling and performance analysis of non-cooperative multi-antenna multi-user MIMO systems. Journal of the Chinese Institute of Engineers, 41(1), 32–39.CrossRef Hassan, A. K., Moinuddin, M., & Al-Saggaf, U. M. (2018). On modeling and performance analysis of non-cooperative multi-antenna multi-user MIMO systems. Journal of the Chinese Institute of Engineers, 41(1), 32–39.CrossRef
27.
go back to reference Mohammed, A. H. M., Moinuddin, M., Al-Saggaf, U. M., & Hassan, A. K. (2019). Outage probability analysis and adaptive combiner for multiuser multipolarized antenna systems. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 67–79.CrossRef Mohammed, A. H. M., Moinuddin, M., Al-Saggaf, U. M., & Hassan, A. K. (2019). Outage probability analysis and adaptive combiner for multiuser multipolarized antenna systems. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 67–79.CrossRef
28.
go back to reference Hassan, A. K., Moinuddin, M., & Al-Saggaf, U. M. (2018). Sum ergodic capacity analysis using asymptotic design of massive MU-MIMO systems. Wireless Personal Communications, 100(4), 1743–1752.CrossRef Hassan, A. K., Moinuddin, M., & Al-Saggaf, U. M. (2018). Sum ergodic capacity analysis using asymptotic design of massive MU-MIMO systems. Wireless Personal Communications, 100(4), 1743–1752.CrossRef
29.
go back to reference Astely, D., Dahlman, E., Fodor, G., Parkvall, S., & Sachs, J. (2013). LTE release 12 and beyond. IEEE Communication Magazine, 51(7), 154–160.CrossRef Astely, D., Dahlman, E., Fodor, G., Parkvall, S., & Sachs, J. (2013). LTE release 12 and beyond. IEEE Communication Magazine, 51(7), 154–160.CrossRef
30.
go back to reference Rushdi, A. M. (1983). How to hand-check a symbolic reliability expression. IEEE Transactions on Reliability, 32(5), 402–408.CrossRef Rushdi, A. M. (1983). How to hand-check a symbolic reliability expression. IEEE Transactions on Reliability, 32(5), 402–408.CrossRef
31.
go back to reference Rushdi, A. M. (1983). Symbolic reliability analysis with the aid of variable-entered Karnaugh maps. IEEE Transactions on Reliability, 32(2), 134–139.CrossRef Rushdi, A. M. (1983). Symbolic reliability analysis with the aid of variable-entered Karnaugh maps. IEEE Transactions on Reliability, 32(2), 134–139.CrossRef
32.
go back to reference Rushdi, A. M., & Al-Hindi, K. A. (1993). A table for the lower boundary of the region of useful redundancy for k-out-of-n systems. Microelectronics and Reliability, 33(7), 979–992.CrossRef Rushdi, A. M., & Al-Hindi, K. A. (1993). A table for the lower boundary of the region of useful redundancy for k-out-of-n systems. Microelectronics and Reliability, 33(7), 979–992.CrossRef
33.
go back to reference Soh, S., & Rai, S. (2005). An efficient cutset approach for evaluating communication-network reliability with heterogeneous link-capacities. IEEE Transactions on Reliability, 54(1), 133–144.CrossRef Soh, S., & Rai, S. (2005). An efficient cutset approach for evaluating communication-network reliability with heterogeneous link-capacities. IEEE Transactions on Reliability, 54(1), 133–144.CrossRef
34.
go back to reference Kuo, W., & Zhu, X. (2012). Importance Measures in Reliability, Risk, and Optimization: Principles and Applications. Hoboken: Wiley.CrossRef Kuo, W., & Zhu, X. (2012). Importance Measures in Reliability, Risk, and Optimization: Principles and Applications. Hoboken: Wiley.CrossRef
35.
go back to reference Tanaka, H., Fan, L. T., Lai, F. S., & Toguchi, K. (1983). Fault-tree analysis by fuzzy probability. IEEE Transactions on Reliability, 32(5), 453–457.CrossRef Tanaka, H., Fan, L. T., Lai, F. S., & Toguchi, K. (1983). Fault-tree analysis by fuzzy probability. IEEE Transactions on Reliability, 32(5), 453–457.CrossRef
36.
go back to reference Weber, D. P. (1994). Fuzzy fault tree analysis. In Proceedings of 1994 IEEE 3rd international fuzzy systems conference, Orlando, FL (Vol. 3, pp. 1899–1904). Weber, D. P. (1994). Fuzzy fault tree analysis. In Proceedings of 1994 IEEE 3rd international fuzzy systems conference, Orlando, FL (Vol. 3, pp. 1899–1904).
37.
go back to reference Li, Y. F., Ding, Y., & Zio, E. (2014). Random fuzzy extension of the universal generating function approach for the reliability assessment of multi-state systems under aleatory and epistemic uncertainties. IEEE Transactions on Reliability, 63(1), 13–25.CrossRef Li, Y. F., Ding, Y., & Zio, E. (2014). Random fuzzy extension of the universal generating function approach for the reliability assessment of multi-state systems under aleatory and epistemic uncertainties. IEEE Transactions on Reliability, 63(1), 13–25.CrossRef
38.
go back to reference Rushdi, A. M. (1985). Uncertainty analysis of fault-tree outputs. IEEE Transactions on Reliability, 34(5), 458–462.CrossRef Rushdi, A. M. (1985). Uncertainty analysis of fault-tree outputs. IEEE Transactions on Reliability, 34(5), 458–462.CrossRef
39.
go back to reference Masera, M. (1987). Uncertainty propagation in fault tree analyses using lognormal distributions. IEEE Transactions on Reliability, 36(1), 145–149.CrossRef Masera, M. (1987). Uncertainty propagation in fault tree analyses using lognormal distributions. IEEE Transactions on Reliability, 36(1), 145–149.CrossRef
40.
go back to reference Rushdi, A. M., & Kafrawy, K. F. (1988). Uncertainty propagation in fault-tree analyses using an exact method of moments. Microelectronics and Reliability, 28(6), 945–965.CrossRef Rushdi, A. M., & Kafrawy, K. F. (1988). Uncertainty propagation in fault-tree analyses using an exact method of moments. Microelectronics and Reliability, 28(6), 945–965.CrossRef
41.
go back to reference Rushdi, A. M. A., & Hassan, A. K. (2016). Quantification of uncertainty in the reliability of migration between habitat patches. Computational Ecology and Software, 6(3), 66–82. Rushdi, A. M. A., & Hassan, A. K. (2016). Quantification of uncertainty in the reliability of migration between habitat patches. Computational Ecology and Software, 6(3), 66–82.
42.
go back to reference Verma, A. K., Ajit, S., & Karanki, D. R. (2016). Uncertainty analysis in reliability/safety assessment. Chapter 13 in Reliability and safety engineering (pp. 457–491). London: Springer. Verma, A. K., Ajit, S., & Karanki, D. R. (2016). Uncertainty analysis in reliability/safety assessment. Chapter 13 in Reliability and safety engineering (pp. 457–491). London: Springer.
43.
go back to reference Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions. New York, NY: Wiley. Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions. New York, NY: Wiley.
44.
go back to reference Ahmed, R., Al-Saggaf, U. M., Moinuddin, M., & Hassan, A. K. (2017). Mitigation of self-interference and multi-user interference in downlink multi-user MIMO system. IET Communications, 11(17), 2605–12.CrossRef Ahmed, R., Al-Saggaf, U. M., Moinuddin, M., & Hassan, A. K. (2017). Mitigation of self-interference and multi-user interference in downlink multi-user MIMO system. IET Communications, 11(17), 2605–12.CrossRef
Metadata
Title
System reliability analysis of small-cell deployment in heterogeneous cellular networks
Authors
Ali Muhammad Ali Rushdi
Ahmad Kamal Hassan
Muhammad Moinuddin
Publication date
18-09-2019
Publisher
Springer US
Published in
Telecommunication Systems / Issue 3/2020
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-019-00615-2

Other articles of this Issue 3/2020

Telecommunication Systems 3/2020 Go to the issue