Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2015

01-02-2015 | Review Paper

Systematic review of catalyst nanoparticles synthesized by solution process: towards efficient carbon nanotube growth

Authors: Mohd Asyadi Azam, Nor Najihah Zulkapli, Zulhilmi Mohamed Nawi, Nik Mohamad Azren

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nano-field research has been expanded rapidly since those tiny materials such as carbon nanotubes (CNTs), cobalt catalyst and iron catalyst can give huge impact to the application products with their extraordinary properties. The scientific discovery of these materials can be defined as a magic key to solve the raw materials shortage and unlock the limitation performance of the devices. CNTs have been found to be one of the new nanomaterials that can improve different kind of devices’ performance. CNT can be grown on the substrates with the presence of active metal catalysts. Since small metal catalyst particles (diameter <10 nm) are crucial in growing CNTs, the deposition method of metal catalyst on the substrates has been studied. The optional processes using solutions to produce catalyst nanoparticles will be discussed in this review. Sol–gel process along with spin coating is the most suitable deposition method with low cost of production and the easiness to control particle size deposited on the substrates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56
2.
go back to reference Radushkevich LV, Lukyanovich VM (1952) On the carbon structure formed during thermal decomposition of carbon monoxide in the presence of iron (in Russian). Zh Fiz Khim 26:88 Radushkevich LV, Lukyanovich VM (1952) On the carbon structure formed during thermal decomposition of carbon monoxide in the presence of iron (in Russian). Zh Fiz Khim 26:88
3.
go back to reference Tesner PA, Echeistova AI (1952) Investigation of the growth process of carbon-black particles by means of the electron microscope. Dokl Akad Nauk USSR 87:1029 Tesner PA, Echeistova AI (1952) Investigation of the growth process of carbon-black particles by means of the electron microscope. Dokl Akad Nauk USSR 87:1029
4.
go back to reference Davis WR, Slawson RJ, Rigby GR (1953) An unusual form of carbon. Nature 171:756 Davis WR, Slawson RJ, Rigby GR (1953) An unusual form of carbon. Nature 171:756
5.
go back to reference Hofer LJE, Sterling E, McCartney JT (1955) Structure of the carbon deposited from carbon monoxide on iron, cobalt and nickel. J Phys Chem 59:1153 Hofer LJE, Sterling E, McCartney JT (1955) Structure of the carbon deposited from carbon monoxide on iron, cobalt and nickel. J Phys Chem 59:1153
6.
go back to reference Walker PL, Rakszawski JF, Imperial GR (1959) Carbon formation from carbon monoxide–hydrogen mixtures over iron catalysts. J Phys Chem 63:133 Walker PL, Rakszawski JF, Imperial GR (1959) Carbon formation from carbon monoxide–hydrogen mixtures over iron catalysts. J Phys Chem 63:133
7.
go back to reference Baird T, Fryer JR, Grant B (1971) Structure of fibrous carbon. Nature 233:329–330 Baird T, Fryer JR, Grant B (1971) Structure of fibrous carbon. Nature 233:329–330
8.
go back to reference Baird T, Fryer JR, Grant B (1974) Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 °C. Carbon 12:591 Baird T, Fryer JR, Grant B (1974) Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 °C. Carbon 12:591
9.
go back to reference Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51 Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51
10.
go back to reference Baker RTK, Harris PS, Thomas RB, Waite RJ (1973) Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. Catalysis 30:86 Baker RTK, Harris PS, Thomas RB, Waite RJ (1973) Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. Catalysis 30:86
11.
go back to reference Baker RTK, Waite RJ (1975) Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. Catalysis 37:101 Baker RTK, Waite RJ (1975) Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. Catalysis 37:101
12.
go back to reference Koyama T, Endo M, Onuma Y (1972) Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon. J Appl Phys 11:445 Koyama T, Endo M, Onuma Y (1972) Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon. J Appl Phys 11:445
13.
go back to reference Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335 Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335
14.
go back to reference Baker RTK, Harris PS (1978) Chemistry and Physics of Carbon, vol 14. Marcel Dekker, New York, p 83 Baker RTK, Harris PS (1978) Chemistry and Physics of Carbon, vol 14. Marcel Dekker, New York, p 83
15.
go back to reference Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315 Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315
16.
go back to reference Endo M (1988) Grow carbon fibres in the vapour phase. ChemTech 18:568 Endo M (1988) Grow carbon fibres in the vapour phase. ChemTech 18:568
17.
go back to reference Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Graphite fibers and filaments, vol 5. Springer, Berlin, p 382 Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Graphite fibers and filaments, vol 5. Springer, Berlin, p 382
18.
go back to reference Speck JS, Endo M, Dresselhaus MS (1989) J Cryst Growth 94:834 Speck JS, Endo M, Dresselhaus MS (1989) J Cryst Growth 94:834
19.
go back to reference Kroto H (2001) Fullerene science—a most international endeavor. J Mol Graph Model 19:187–188 Kroto H (2001) Fullerene science—a most international endeavor. J Mol Graph Model 19:187–188
20.
go back to reference Azam MA, Isomura K, Fujiwara A, Shimoda T (2011) Towards realization of high performance electrochemical device using vertical-aligned single-walled carbon nanotubes. Glob Eng Technol Rev 1:1–8 Azam MA, Isomura K, Fujiwara A, Shimoda T (2011) Towards realization of high performance electrochemical device using vertical-aligned single-walled carbon nanotubes. Glob Eng Technol Rev 1:1–8
21.
go back to reference Azam MA, Manaf NSA, Talib E, Bistamam MSA (2013) Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review. Ionics 19:1455–1476 Azam MA, Manaf NSA, Talib E, Bistamam MSA (2013) Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review. Ionics 19:1455–1476
22.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1 nm diameter. Nature 363:603 Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1 nm diameter. Nature 363:603
23.
go back to reference Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607 Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607
24.
go back to reference Yuan D, Ding L, Chu H, Feng Y, McNicholas TP, Liu J (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579 Yuan D, Ding L, Chu H, Feng Y, McNicholas TP, Liu J (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579
25.
go back to reference Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T et al (2004) Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett 385:298–303 Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T et al (2004) Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett 385:298–303
26.
go back to reference Huang S, Cai X, Liu J (2003) Growth of millimeter long and strates. J Am Chem Soc 125:5636–5637 Huang S, Cai X, Liu J (2003) Growth of millimeter long and strates. J Am Chem Soc 125:5636–5637
27.
go back to reference Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758 Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758
28.
go back to reference Homma Y, Kobayashi Y, Ogino T, Takagi D, Ito R, Jung YJ, Ajayan PM (2003) Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J Phys Chem B 107:12161–12164 Homma Y, Kobayashi Y, Ogino T, Takagi D, Ito R, Jung YJ, Ajayan PM (2003) Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J Phys Chem B 107:12161–12164
29.
go back to reference Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Lucas AA (1996) Fe-catalyzed carbon nanotube formation. Carbon 34:1249–1257 Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Lucas AA (1996) Fe-catalyzed carbon nanotube formation. Carbon 34:1249–1257
30.
go back to reference Hernadi K, Fonseca A, Nagy JB, Bemaerts D, Fudala A, Lucas AA (1996) Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 17:416–423 Hernadi K, Fonseca A, Nagy JB, Bemaerts D, Fudala A, Lucas AA (1996) Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 17:416–423
31.
go back to reference He H, Gao C (2011) Synthesis of Fe3O4/Pt nanoparticles decorated carbon nanotubes and their use as magnetically recyclable catalysts. J Nanomater 2011:1–10 He H, Gao C (2011) Synthesis of Fe3O4/Pt nanoparticles decorated carbon nanotubes and their use as magnetically recyclable catalysts. J Nanomater 2011:1–10
32.
go back to reference Esconjauregui S, Whelan CM, Maex K (2009) The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47:659–669 Esconjauregui S, Whelan CM, Maex K (2009) The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47:659–669
33.
go back to reference Ding L, Tselev A, Wang JY, Yuan DN, Chu HB, McNicholas TP, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805 Ding L, Tselev A, Wang JY, Yuan DN, Chu HB, McNicholas TP, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805
34.
go back to reference Ding L, Yuan DN, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130:5428–5429 Ding L, Yuan DN, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130:5428–5429
35.
go back to reference Feng YY, Zhang HB, Hou Y, McNicholas TP, Yuan DN, Yang SW, Ding L, Feng W, Liu J (2008) Room temperature purification of few-walled carbon nano-tubes with high yield. ACS Nano 2:1634–1638 Feng YY, Zhang HB, Hou Y, McNicholas TP, Yuan DN, Yang SW, Ding L, Feng W, Liu J (2008) Room temperature purification of few-walled carbon nano-tubes with high yield. ACS Nano 2:1634–1638
36.
go back to reference Liu X, Baronian KHR, Downard AJ (2009) Direct growth of vertically aligned carbon nanotubes on a planar carbon substrate by thermal chemical vapour deposition. Carbon 47:500–506 Liu X, Baronian KHR, Downard AJ (2009) Direct growth of vertically aligned carbon nanotubes on a planar carbon substrate by thermal chemical vapour deposition. Carbon 47:500–506
37.
go back to reference Azam MA, Fujiwara A, Shimoda T (2011) Direct growth of vertically-aligned single-walled carbon nanotubes on conducting substrates using ethanol for electrochemical capacitor. J New Mater Electrochem Syst 14:173–178 Azam MA, Fujiwara A, Shimoda T (2011) Direct growth of vertically-aligned single-walled carbon nanotubes on conducting substrates using ethanol for electrochemical capacitor. J New Mater Electrochem Syst 14:173–178
38.
go back to reference Kim B, Chung H, Chu KS, Yoon HG, Lee CJ, Kim W (2010) Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties. Synth Met 160:584–587 Kim B, Chung H, Chu KS, Yoon HG, Lee CJ, Kim W (2010) Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties. Synth Met 160:584–587
39.
go back to reference Kim BW, Chung HG, Min BK, Kim HG, Kim W (2010) Electrochemical capacitors based on aligned carbon nanotubes directly synthesized on tantalum substrates. Bull Korean Chem Soc 31:3697–3702 Kim BW, Chung HG, Min BK, Kim HG, Kim W (2010) Electrochemical capacitors based on aligned carbon nanotubes directly synthesized on tantalum substrates. Bull Korean Chem Soc 31:3697–3702
40.
go back to reference Liu H, Zhang Y, Arato D, Li R, Mérel P, Sun X (2008) Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: critical effects of buffer layer. Surf Coat Technol 202:4114–4120 Liu H, Zhang Y, Arato D, Li R, Mérel P, Sun X (2008) Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: critical effects of buffer layer. Surf Coat Technol 202:4114–4120
41.
go back to reference Lee CJ, Park J (2001) Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition. Carbon 39:1891–1896 Lee CJ, Park J (2001) Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition. Carbon 39:1891–1896
42.
go back to reference Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474 Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474
43.
go back to reference Kumar M, Ando Y (2003) A simple method of producing aligned carbon nanotubes from an unconventional precursor—Champor. Chem Phys Lett 374:521–526 Kumar M, Ando Y (2003) A simple method of producing aligned carbon nanotubes from an unconventional precursor—Champor. Chem Phys Lett 374:521–526
44.
go back to reference Colomer JF, Stephan C, Lefrant S, Van-Tendeloo G, Willems I, Konya Z, Fonseca A, Laurent C, Nagy JB (2000) Large-scale synthesis of single-wall carbon nanotubes by catalytic vapor deposition (CCVD) method. Chem Phys Lett 317:83–89 Colomer JF, Stephan C, Lefrant S, Van-Tendeloo G, Willems I, Konya Z, Fonseca A, Laurent C, Nagy JB (2000) Large-scale synthesis of single-wall carbon nanotubes by catalytic vapor deposition (CCVD) method. Chem Phys Lett 317:83–89
45.
go back to reference Ward J, Wei BQ, Ajayan PM (2003) Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane. Chem Phys Lett 376:717–725 Ward J, Wei BQ, Ajayan PM (2003) Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane. Chem Phys Lett 376:717–725
46.
go back to reference Ago H, Nakamura K, Imamura S, Tsuji M (2004) Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO. Chem Phys Lett 391:308–313 Ago H, Nakamura K, Imamura S, Tsuji M (2004) Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO. Chem Phys Lett 391:308–313
47.
go back to reference Willems I, Konya Z, Colomer JF, Tendeloo GV, Nagaraju N, Fonseca A, Nagy JB (2000) Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett 317:71–76 Willems I, Konya Z, Colomer JF, Tendeloo GV, Nagaraju N, Fonseca A, Nagy JB (2000) Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett 317:71–76
48.
go back to reference Kumar M, Ando Y (2005) Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon 43:533–540 Kumar M, Ando Y (2005) Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon 43:533–540
49.
go back to reference Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433 Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433
50.
go back to reference Hongo H, Yudasaka M, Ichihashi T, Nihey F, Iijima S (2002) Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates. Chem Phys Lett 361:349–354 Hongo H, Yudasaka M, Ichihashi T, Nihey F, Iijima S (2002) Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates. Chem Phys Lett 361:349–354
51.
go back to reference Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364 Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364
52.
go back to reference Kumar M, Kakamu K, Okazaki T, Ando Y (2004) Field emission from camphor–pyrolyzed carbon nanotubes. Chem Phys Lett 385:161–165 Kumar M, Kakamu K, Okazaki T, Ando Y (2004) Field emission from camphor–pyrolyzed carbon nanotubes. Chem Phys Lett 385:161–165
53.
go back to reference Ding D, Wang J, Cao Z, Dai J (2003) Synthesis of carbon nanostructures on nanocrystalline Ni–Ni3P catalyst supported by SiC whiskers. Carbon 41:579–582 Ding D, Wang J, Cao Z, Dai J (2003) Synthesis of carbon nanostructures on nanocrystalline Ni–Ni3P catalyst supported by SiC whiskers. Carbon 41:579–582
54.
go back to reference Murakami T, Sako T, Harima H, Kisoda K, Mitikami K, Isshiki T (2004) Raman study of SWNTs grown by CCVD method on SiC. Thin Solid Films 464–465:319–322 Murakami T, Sako T, Harima H, Kisoda K, Mitikami K, Isshiki T (2004) Raman study of SWNTs grown by CCVD method on SiC. Thin Solid Films 464–465:319–322
55.
go back to reference Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503 Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503
56.
go back to reference Mattevi C, Wirth CT, Hofmann S, Blume R, Cantoro M, Ducati C, Cepek C, Gericke AK, Milne S, Cudia CC, Dolafi S, Goldoni A, Schloegl R, Robertson J (2008) In-situ X-ray photoelectron spectroscopy study of catalyst–support interactions and growth of carbon nanotube forests. J Phys Chem C 112:12207–12213 Mattevi C, Wirth CT, Hofmann S, Blume R, Cantoro M, Ducati C, Cepek C, Gericke AK, Milne S, Cudia CC, Dolafi S, Goldoni A, Schloegl R, Robertson J (2008) In-situ X-ray photoelectron spectroscopy study of catalyst–support interactions and growth of carbon nanotube forests. J Phys Chem C 112:12207–12213
57.
go back to reference Seah CM, Chai SP, Ichikawa S, Mohamed AR (2012) Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol–PEG colloidal solution. Carbon 50:960–967 Seah CM, Chai SP, Ichikawa S, Mohamed AR (2012) Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol–PEG colloidal solution. Carbon 50:960–967
58.
go back to reference Abdeen MA (2011) Synthesis of carbon nano tubes on silicon substrates using alcohol catalytic chemical vapor deposition. Mater Sci Appl 2:922–935 Abdeen MA (2011) Synthesis of carbon nano tubes on silicon substrates using alcohol catalytic chemical vapor deposition. Mater Sci Appl 2:922–935
59.
go back to reference Barzegar HR, Nitze F, Sharifi T, Ramstedt M, Tai CW, Malolepszy A, Stobinski L, Wågberg T (2012) Simple dip-coating process for the synthesis of small diameter single-walled carbon nanotubes-effect of catalyst composition and catalyst particle size on chirality and diameter. J Phys Chem C Nanomater Interfaces 116:12232–12239 Barzegar HR, Nitze F, Sharifi T, Ramstedt M, Tai CW, Malolepszy A, Stobinski L, Wågberg T (2012) Simple dip-coating process for the synthesis of small diameter single-walled carbon nanotubes-effect of catalyst composition and catalyst particle size on chirality and diameter. J Phys Chem C Nanomater Interfaces 116:12232–12239
60.
go back to reference Azam MA, Abd Rashid MW, Isomura K, Fujiwara A, Shimoda T (2012) X-ray and morphological characterization of Al–O thin films used for vertically aligned single-walled carbon nanotube growth. Adv Mater Res 620:213–218 Azam MA, Abd Rashid MW, Isomura K, Fujiwara A, Shimoda T (2012) X-ray and morphological characterization of Al–O thin films used for vertically aligned single-walled carbon nanotube growth. Adv Mater Res 620:213–218
61.
go back to reference Azam MA, Fujiwara A, Shimoda T (2011) Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol. Appl Surf Sci 258:873–882 Azam MA, Fujiwara A, Shimoda T (2011) Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol. Appl Surf Sci 258:873–882
62.
go back to reference See CH, Harris AT (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res 46:997–1012 See CH, Harris AT (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res 46:997–1012
63.
go back to reference Journet C, Bernier P (1998) Production of carbon nanotubes. Appl Phys A 67:1–9 Journet C, Bernier P (1998) Production of carbon nanotubes. Appl Phys A 67:1–9
64.
go back to reference Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222 Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222
65.
go back to reference Dupuis A (2005) The catalyst in the CCVD of carbon nanotubes—a review. Prog Mater Sci 50:929–961 Dupuis A (2005) The catalyst in the CCVD of carbon nanotubes—a review. Prog Mater Sci 50:929–961
66.
go back to reference Moshkalev SA, Verissimo C (2007) Nucleation and growth of carbon nanotubes in catalytic chemical vapor deposition. J Appl Phys 102:044303 Moshkalev SA, Verissimo C (2007) Nucleation and growth of carbon nanotubes in catalytic chemical vapor deposition. J Appl Phys 102:044303
67.
go back to reference Awasthi K, Srivastava A, Srivastava ON (2005) Synthesis of carbon nanotubes. J Nanosci Nanotechnol 5:1616–1636 Awasthi K, Srivastava A, Srivastava ON (2005) Synthesis of carbon nanotubes. J Nanosci Nanotechnol 5:1616–1636
68.
go back to reference Saengmee-Anupharb S, Thongpang S, Bertheir ESP, SIngjai P (2010) Growth of vertically aligned carbon nanotubes on silicon using a sparked iron-cobalt catalyst. ISRN Nanotechnol 2011:1–8 Saengmee-Anupharb S, Thongpang S, Bertheir ESP, SIngjai P (2010) Growth of vertically aligned carbon nanotubes on silicon using a sparked iron-cobalt catalyst. ISRN Nanotechnol 2011:1–8
69.
go back to reference Tessonnier JP, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. ChemSusChem 4:824–847 Tessonnier JP, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. ChemSusChem 4:824–847
70.
go back to reference Adams T, Duong B, Seraphin S (2012) Effects of catalyst components on carbon nanotubes grown by chemical vapor deposition. J Undergrad Res 1–8 Adams T, Duong B, Seraphin S (2012) Effects of catalyst components on carbon nanotubes grown by chemical vapor deposition. J Undergrad Res 1–8
71.
go back to reference Lindsay SM (2010) Introduction to nanoscience. Oxford University Press, New York, pp 178–202 Lindsay SM (2010) Introduction to nanoscience. Oxford University Press, New York, pp 178–202
72.
go back to reference Seal S (2008) Functional nanostructures: processing, characterization, and applications. In: Nanostructure science and technology. Springer, New York, pp 504–511 Seal S (2008) Functional nanostructures: processing, characterization, and applications. In: Nanostructure science and technology. Springer, New York, pp 504–511
73.
go back to reference Edelstein AS, Cammaratra RC (1996) Nanomaterials: synthesis, properties and applications. CRS Press, 2nd edn. Taylor & Francis Group, New York, pp 13–68 Edelstein AS, Cammaratra RC (1996) Nanomaterials: synthesis, properties and applications. CRS Press, 2nd edn. Taylor & Francis Group, New York, pp 13–68
74.
go back to reference Sen R, Das S, Das K (2011) Combustion and ball milled synthesis of rare earth nano-sized ceria powder. Mater Sci Appl 2:416–420 Sen R, Das S, Das K (2011) Combustion and ball milled synthesis of rare earth nano-sized ceria powder. Mater Sci Appl 2:416–420
75.
go back to reference Sharma A (2013) Effect of synthesis routes on microstructure of nanocrystalline cerium oxide powder. Materials Sciences and Applications 4:504–508 Sharma A (2013) Effect of synthesis routes on microstructure of nanocrystalline cerium oxide powder. Materials Sciences and Applications 4:504–508
76.
go back to reference Lu K (2012) Nanoparticulate materials: synthesis, characterization, and processing. John Wiley & Sons Inc, New Jersey, pp 181–183 Lu K (2012) Nanoparticulate materials: synthesis, characterization, and processing. John Wiley & Sons Inc, New Jersey, pp 181–183
77.
go back to reference Koch CC, Youssef KM, Scattergood RO (2008) Mechanical properties of nanocrystalline materials produced by in situ. Mater Sci Forum 579:15–28 Koch CC, Youssef KM, Scattergood RO (2008) Mechanical properties of nanocrystalline materials produced by in situ. Mater Sci Forum 579:15–28
78.
go back to reference Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing, 2nd edn. Elsevier, Amsterdam Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing, 2nd edn. Elsevier, Amsterdam
79.
go back to reference Hecht C, Abdali A, Dreier T, Schulz C (2011) Gas-temperature imaging in a microwave-plasma nanoparticle-synthesis reactor using multi-line NO-LIF thermometry. International journal of research in physical chemistry and chemical physics 225:1225–1235 Hecht C, Abdali A, Dreier T, Schulz C (2011) Gas-temperature imaging in a microwave-plasma nanoparticle-synthesis reactor using multi-line NO-LIF thermometry. International journal of research in physical chemistry and chemical physics 225:1225–1235
80.
go back to reference Ramakrishanan P (2007) Powder metallurgy. In: New age international, 1st Edn. Bombay, India, p 46 Ramakrishanan P (2007) Powder metallurgy. In: New age international, 1st Edn. Bombay, India, p 46
81.
go back to reference Riedel R, Chen IW (2011) Ceramics science and technology, synthesis and processing. John Wiley & Sons Inc, New Jersey, pp 78–79 Riedel R, Chen IW (2011) Ceramics science and technology, synthesis and processing. John Wiley & Sons Inc, New Jersey, pp 78–79
82.
go back to reference Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2:127–146 Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2:127–146
83.
go back to reference Cao G, Wang Y (2004) Nanostructures and nanomaterials: synthesis, properties and applications, 2nd Edn. Imperial College Press, World Scientific, pp 76–81 Cao G, Wang Y (2004) Nanostructures and nanomaterials: synthesis, properties and applications, 2nd Edn. Imperial College Press, World Scientific, pp 76–81
84.
go back to reference Edel JB, Krishnadasan S, Torvilla J, Compte RV, John C (2003) Controlled synthesis of compound semiconductor nanoparticles using microfluidic reactors. In: Transducers, solid-state sensors, actuators and microsystems, 12th International Conference, vol 2. IEEE, Boston, pp 1730–1733 Edel JB, Krishnadasan S, Torvilla J, Compte RV, John C (2003) Controlled synthesis of compound semiconductor nanoparticles using microfluidic reactors. In: Transducers, solid-state sensors, actuators and microsystems, 12th International Conference, vol 2. IEEE, Boston, pp 1730–1733
85.
go back to reference Schmid G (2004) Nanoparticles. WILEY-VCH Verlag GmbH & Co. KGaA, Germany, pp 191–192 Schmid G (2004) Nanoparticles. WILEY-VCH Verlag GmbH & Co. KGaA, Germany, pp 191–192
86.
go back to reference Anzlovar A (2011) Polyol mediated nano size zinc oxide and nanocomposites with poly(methyl methacrylate). Express Polym Lett 5:604–619 Anzlovar A (2011) Polyol mediated nano size zinc oxide and nanocomposites with poly(methyl methacrylate). Express Polym Lett 5:604–619
87.
go back to reference Roy R (1994) Accelerating the kinetics of low-temperature inorganic syntheses. J Solid State Chem 111:11–17 Roy R (1994) Accelerating the kinetics of low-temperature inorganic syntheses. J Solid State Chem 111:11–17
88.
go back to reference Suchanek WL, Riman RE (2006) Hydrothermal synthesis of advanced ceramic powders. Adv Sci Technol 45:184–193 Suchanek WL, Riman RE (2006) Hydrothermal synthesis of advanced ceramic powders. Adv Sci Technol 45:184–193
89.
go back to reference Merzhanov AG (1993) Theory and practice of SHS: worldwide state of the art and the newest results. Int J Self-Propag High Temp Synth 2:113–158 Merzhanov AG (1993) Theory and practice of SHS: worldwide state of the art and the newest results. Int J Self-Propag High Temp Synth 2:113–158
90.
go back to reference Sathiwitayakul T, Newton E, Parkin IP, Kuznetsov M, Binions R (2013) Ferrite materials for gas sensing applications. In: Sensors, 2013 IEEE pp 1–4 Sathiwitayakul T, Newton E, Parkin IP, Kuznetsov M, Binions R (2013) Ferrite materials for gas sensing applications. In: Sensors, 2013 IEEE pp 1–4
91.
go back to reference Ramakrishnan S (2005) Nanostructure polymers. In: The Chemistry of nanomaterials. Weinheim, Germany, pp 476–541 Ramakrishnan S (2005) Nanostructure polymers. In: The Chemistry of nanomaterials. Weinheim, Germany, pp 476–541
92.
go back to reference Murakami Y, Yamakita S, Okubo T, Maruyama S (2003) Single-walled carbon nanotubes catalytically grown from mesoporous silica thin film. Chem Phys Lett 375:393–398 Murakami Y, Yamakita S, Okubo T, Maruyama S (2003) Single-walled carbon nanotubes catalytically grown from mesoporous silica thin film. Chem Phys Lett 375:393–398
93.
go back to reference Murakami Y, Miyauchi Y, Chiashi S, Maruyama S (2003) Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem Phys Lett 377:49–54 Murakami Y, Miyauchi Y, Chiashi S, Maruyama S (2003) Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem Phys Lett 377:49–54
94.
go back to reference Hu M, Murakami Y, Ogura M, Maruyama S, Okubo T (2004) Morphology and chemical state of Co–Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates. J Catal 225:230–239 Hu M, Murakami Y, Ogura M, Maruyama S, Okubo T (2004) Morphology and chemical state of Co–Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates. J Catal 225:230–239
95.
go back to reference Seah CM, Chai SP, Ichikawa S, Mohamed AR (2013) Control of iron nanoparticle size by manipulating PEG–ethanol colloidal solutions and spin-coating parameters for the growth of single-walled carbon nanotubes. Particuology 11:394–400 Seah CM, Chai SP, Ichikawa S, Mohamed AR (2013) Control of iron nanoparticle size by manipulating PEG–ethanol colloidal solutions and spin-coating parameters for the growth of single-walled carbon nanotubes. Particuology 11:394–400
96.
go back to reference Dündar-Tekkaya ED, Karatepe N (2011) Production of carbon nanotubes by iron catalyst. World Acad Sci Eng Technol 55:225–231 Dündar-Tekkaya ED, Karatepe N (2011) Production of carbon nanotubes by iron catalyst. World Acad Sci Eng Technol 55:225–231
97.
go back to reference Trépanier M, Dalai AK, Abatzoglou N (2010) Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions. Appl Catal A 374:79–86 Trépanier M, Dalai AK, Abatzoglou N (2010) Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions. Appl Catal A 374:79–86
98.
go back to reference Terrado E, Redrado M, Muñoz E, Maser WK, Benito AM, Martínez MT (2006) Carbon nanotube growth on cobalt-sprayed substrates by thermal CVD. Mater Sci Eng C 26:1185–1188 Terrado E, Redrado M, Muñoz E, Maser WK, Benito AM, Martínez MT (2006) Carbon nanotube growth on cobalt-sprayed substrates by thermal CVD. Mater Sci Eng C 26:1185–1188
99.
go back to reference Yan X, Liu C (2013) Diamond and related materials effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst. Diam Relat Mater 31:50–57 Yan X, Liu C (2013) Diamond and related materials effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst. Diam Relat Mater 31:50–57
100.
go back to reference Chen CM, Dai YM, Huang JG, Jehng JM (2006) Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44:1808–1820 Chen CM, Dai YM, Huang JG, Jehng JM (2006) Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44:1808–1820
101.
go back to reference Triantafyllidis KS, Karakoulia SA, Gournis D, Delimitis A, Nalbandian L, Maccallini E, Rudolf P (2008) Formation of carbon nanotubes on iron/cobalt oxides supported on zeolite-Y: effect of zeolite textural properties and particle morphology. Microporous Mesoporous Mater 110:128–140 Triantafyllidis KS, Karakoulia SA, Gournis D, Delimitis A, Nalbandian L, Maccallini E, Rudolf P (2008) Formation of carbon nanotubes on iron/cobalt oxides supported on zeolite-Y: effect of zeolite textural properties and particle morphology. Microporous Mesoporous Mater 110:128–140
102.
go back to reference Unalan HE, Chhowalla M (2005) Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology 16:2153 Unalan HE, Chhowalla M (2005) Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology 16:2153
103.
go back to reference Patil V (2012) Synthesis and characterization of Co3O4 thin film. Soft Nanosci Lett 2:1–7 Patil V (2012) Synthesis and characterization of Co3O4 thin film. Soft Nanosci Lett 2:1–7
104.
go back to reference Xiang R, Einarsson E, Murakami Y, Shiomi J, Chiashi S, Tang Z, Maruyama S (2012) Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 6:7472–7479 Xiang R, Einarsson E, Murakami Y, Shiomi J, Chiashi S, Tang Z, Maruyama S (2012) Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 6:7472–7479
105.
go back to reference Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872–15884 Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872–15884
106.
go back to reference Chopra N, McWhinney HG, Shi W (2011) Chemical changes in carbon nanotube-nickel/nickel oxide core/shell nanoparticle heterostructures treated at high temperatures. Mater Charact 62:635–641 Chopra N, McWhinney HG, Shi W (2011) Chemical changes in carbon nanotube-nickel/nickel oxide core/shell nanoparticle heterostructures treated at high temperatures. Mater Charact 62:635–641
107.
go back to reference Cheng Q, Ma J, Zhang H, Shinya N, Qin LC, Tang J (2010) Electrodeposition of MnO2 on carbon nanotube thin films as flexible electrodes for supercapacitors. Trans Mater Res Soc Jpn 35:369–372 Cheng Q, Ma J, Zhang H, Shinya N, Qin LC, Tang J (2010) Electrodeposition of MnO2 on carbon nanotube thin films as flexible electrodes for supercapacitors. Trans Mater Res Soc Jpn 35:369–372
108.
go back to reference Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501 Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501
109.
go back to reference Luurtsema GA (1997) Spin coating for rectangular substrates. Dissertation, University Of California, Berkeley Luurtsema GA (1997) Spin coating for rectangular substrates. Dissertation, University Of California, Berkeley
110.
go back to reference Shivaraj BW, Murthy HN, Krishna M, Sharma SC (2013) Investigation of influence of spin coating parameters on the morphology of ZnO thin films by taguchi method. Int J Thin Film Sci Technol 2:143–154 Shivaraj BW, Murthy HN, Krishna M, Sharma SC (2013) Investigation of influence of spin coating parameters on the morphology of ZnO thin films by taguchi method. Int J Thin Film Sci Technol 2:143–154
111.
go back to reference Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38:2039–2045 Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38:2039–2045
112.
go back to reference Bornside DE, Macosko CW, Scriven LE (1987) On the modeling of spin coating. J Imaging Technol 13:122–130 Bornside DE, Macosko CW, Scriven LE (1987) On the modeling of spin coating. J Imaging Technol 13:122–130
113.
go back to reference Huh Y, Green ML, Kim YH, Lee JY, Lee CJ (2005) Control of carbon nanotube growth using cobalt nanoparticles as catalyst. Appl Surf Sci 249:145–150 Huh Y, Green ML, Kim YH, Lee JY, Lee CJ (2005) Control of carbon nanotube growth using cobalt nanoparticles as catalyst. Appl Surf Sci 249:145–150
114.
go back to reference Huang YY, Chou KS (2003) Studies on the spin coating process of silica films. Ceram Int 29:485–493 Huang YY, Chou KS (2003) Studies on the spin coating process of silica films. Ceram Int 29:485–493
115.
go back to reference Landau LD, Levich BG (1942) Acta physiochim. URSS 17:42–54 Landau LD, Levich BG (1942) Acta physiochim. URSS 17:42–54
116.
go back to reference Raoufi D, Raoufi T (2009) The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Appl Surf Sci 255:5812–5817 Raoufi D, Raoufi T (2009) The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Appl Surf Sci 255:5812–5817
117.
go back to reference Grimsley LF, Harris EL (2012) Patty’s industrial hygiene and toxicology. John Wiley & Sons, Inc: Wiley online library, New Jersey, pp 637 Grimsley LF, Harris EL (2012) Patty’s industrial hygiene and toxicology. John Wiley & Sons, Inc: Wiley online library, New Jersey, pp 637
118.
go back to reference Fu Y, Kraus L, Zaki MI, Kappenstein C, Tesche B, Knozinger H (1988) Potassium-modified osmium/alumina catalysts. J Mol Catal 44:295–311 Fu Y, Kraus L, Zaki MI, Kappenstein C, Tesche B, Knozinger H (1988) Potassium-modified osmium/alumina catalysts. J Mol Catal 44:295–311
119.
go back to reference Seah CM, Chai SP, Mohamed AR (2011) Synthesis of aligned carbon nanotubes. Carbon 49:4613–4635 Seah CM, Chai SP, Mohamed AR (2011) Synthesis of aligned carbon nanotubes. Carbon 49:4613–4635
120.
go back to reference Lu YP, Li ST, Zhu RF, Li MS, Lei TQ (2003) Formation of ultrafine particles in heat treated plasma-sprayed hydroxyapatite coatings. Surf Coat Technol 165:65–70 Lu YP, Li ST, Zhu RF, Li MS, Lei TQ (2003) Formation of ultrafine particles in heat treated plasma-sprayed hydroxyapatite coatings. Surf Coat Technol 165:65–70
121.
go back to reference Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670 Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670
122.
go back to reference Liao XZ, Serquis A, Jia QX, Peterson DE, Zhu YT, Xu HF (2003) Effect of catalyst composition on carbon nanotube growth. Appl Phys Lett 82:2694–2696 Liao XZ, Serquis A, Jia QX, Peterson DE, Zhu YT, Xu HF (2003) Effect of catalyst composition on carbon nanotube growth. Appl Phys Lett 82:2694–2696
123.
go back to reference Moshkalyov SA, Moreau ALD, Guttiérrez HR, Cotta MA, Swart JW (2004) Carbon nanotubes growth by chemical vapor deposition using thin film nickel catalyst. Mater Sci Eng B 112:147–153 Moshkalyov SA, Moreau ALD, Guttiérrez HR, Cotta MA, Swart JW (2004) Carbon nanotubes growth by chemical vapor deposition using thin film nickel catalyst. Mater Sci Eng B 112:147–153
124.
go back to reference Wei L, Wang B, Liu D, Li LJ, Yang Y, Chen Y (2009) In situ formation of cobalt nanoclusters in sol–gel silica films for single-walled carbon nanotube growth. NANO 4:99–106 Wei L, Wang B, Liu D, Li LJ, Yang Y, Chen Y (2009) In situ formation of cobalt nanoclusters in sol–gel silica films for single-walled carbon nanotube growth. NANO 4:99–106
Metadata
Title
Systematic review of catalyst nanoparticles synthesized by solution process: towards efficient carbon nanotube growth
Authors
Mohd Asyadi Azam
Nor Najihah Zulkapli
Zulhilmi Mohamed Nawi
Nik Mohamad Azren
Publication date
01-02-2015
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2015
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-014-3600-5

Other articles of this Issue 2/2015

Journal of Sol-Gel Science and Technology 2/2015 Go to the issue

Premium Partners