Skip to main content
Top
Published in: Experimental Mechanics 3/2007

01-06-2007

Tailoring Beam Mechanics Towards Enhancing Detection of Hazardous Biological Species

Authors: S. Morshed, B.C. Prorok

Published in: Experimental Mechanics | Issue 3/2007

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microcantilever based sensors have been widely employed for measuring or detecting various hazardous chemical agents and biological agents. Although they have been successful in detecting agents of interest, researchers desire to improve their performance by enhancing their mass sensitivity towards developing “detect to warn” detection capabilities. Moreover, there has been little work aimed at tailoring beam mechanics as a means to enhance mass sensitivity. In this paper, a numerical study is performed to assess the influence of microcantilever geometry on mass sensitivity in order to improve these devices for better detection of hazardous biological agents in liquid environments. Modal analysis was performed on microcantilevers of different geometries and shapes using ANSYS software and compared to the basic rectangular shaped microcantilever structures employed by most researchers. These structures all possessed a 50 μm length, 0.5 μm thickness and 25 μm width where the cantilever is clamped to the substrate, and were analyzed for their basic resonance frequency as well as the frequency shift for the attachment of a 0.285 pg of mass attached on their surfaces. These numerical results indicated that two parameters dominate their behavior, (1) the effective mass of the cantilever at the free end and (2) the clamping width at the fixed end. The ideal geometry was a triangular shape, which minimized effective mass and maximized clamping width, resulting in an order of magnitude increase in mass sensitivity (1,775 Hz/pg) over rectangular shaped cantilevers (172 Hz/pg) of identical length and clamping width. The most practical geometry was triangular shaped cantilever with a square pad at the free end for capturing the agent of interest. This geometry resulted in a mass sensitivity of 628 Hz/pg or nearly a 4-fold increase in performance over their rectangular counterparts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cammann K, Hinkers H, Knoll M (1994) Microstructures and microsystems in instrumental analysis. Analusis 22:M19–M21. Cammann K, Hinkers H, Knoll M (1994) Microstructures and microsystems in instrumental analysis. Analusis 22:M19–M21.
2.
go back to reference Effenhauser CS, Manz A (1994) Miniaturizing a whole analytical laboratory down to chip size. Am Lab 26:15. Effenhauser CS, Manz A (1994) Miniaturizing a whole analytical laboratory down to chip size. Am Lab 26:15.
3.
go back to reference Popp M, Hoffmann J (1993) Technologies for sustained development—a new task for big science. 18:180–184. Popp M, Hoffmann J (1993) Technologies for sustained development—a new task for big science. 18:180–184.
4.
go back to reference Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems—a novel concept for chemical sensing. 1:244–248. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems—a novel concept for chemical sensing. 1:244–248.
5.
go back to reference Roblin P, Barrow DA (2000) Microsystems technology for remote monitoring and control in sustainable agricultural practices. J Environ Monit 2:385–392.CrossRef Roblin P, Barrow DA (2000) Microsystems technology for remote monitoring and control in sustainable agricultural practices. J Environ Monit 2:385–392.CrossRef
6.
go back to reference Oden PI, Wachter EA, Thundat T, Warmack RJ (1996) Optical and infrared detection using microcantilevers. Proc SPIE Int Soc Opt Eng 2744:345–354. Oden PI, Wachter EA, Thundat T, Warmack RJ (1996) Optical and infrared detection using microcantilevers. Proc SPIE Int Soc Opt Eng 2744:345–354.
7.
go back to reference Kiesewetter L, Zhang JM, Houdeau D, Steckenborn A (1992) Determination of young moduli of micromechanical thin-films using the resonance method. Sens Actuators, A, Phys 35:153–159.CrossRef Kiesewetter L, Zhang JM, Houdeau D, Steckenborn A (1992) Determination of young moduli of micromechanical thin-films using the resonance method. Sens Actuators, A, Phys 35:153–159.CrossRef
8.
go back to reference Bouwstra S, Legtenberg R, Tilmans HAC, Elwenspoek M (1990) Resonating microbridge mass-flow sensor. Sens Actuators, A, Phys 21:332–335.CrossRef Bouwstra S, Legtenberg R, Tilmans HAC, Elwenspoek M (1990) Resonating microbridge mass-flow sensor. Sens Actuators, A, Phys 21:332–335.CrossRef
9.
go back to reference Thundat T, Warmack RJ, Chen GY, Allison DP (1994) Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett 64:2894–2896.CrossRef Thundat T, Warmack RJ, Chen GY, Allison DP (1994) Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett 64:2894–2896.CrossRef
10.
go back to reference Chen GY, Warmack RJ, Thundat T, Allison DP, Huang A (1994) Resonance response of scanning force microscopy cantilevers. Rev Sci Instrum 65:2532–2537.CrossRef Chen GY, Warmack RJ, Thundat T, Allison DP, Huang A (1994) Resonance response of scanning force microscopy cantilevers. Rev Sci Instrum 65:2532–2537.CrossRef
11.
go back to reference Allison DP, Thundat T, Jacobson KB, Bottomley LA, Warmack RJ (1993) Imaging entire genetically functional DNA-molecules with the scanning tunneling microscope. J Vac Sci Technol, A, Vac Surf Films 11:816–819.CrossRef Allison DP, Thundat T, Jacobson KB, Bottomley LA, Warmack RJ (1993) Imaging entire genetically functional DNA-molecules with the scanning tunneling microscope. J Vac Sci Technol, A, Vac Surf Films 11:816–819.CrossRef
12.
go back to reference Datskos PG, Sauers I (1999) Detection of 2-mercaptoethanol using gold-coated micromachined cantilevers. Sens Actuators, B, Chem 61:75–82.CrossRef Datskos PG, Sauers I (1999) Detection of 2-mercaptoethanol using gold-coated micromachined cantilevers. Sens Actuators, B, Chem 61:75–82.CrossRef
13.
go back to reference Oden PI, Datskos PG, Thundat T, Warmack RJ (1996) Uncooled thermal imaging using a piezoresistive microcantilever. Appl Phys Lett 69:3277–3279.CrossRef Oden PI, Datskos PG, Thundat T, Warmack RJ (1996) Uncooled thermal imaging using a piezoresistive microcantilever. Appl Phys Lett 69:3277–3279.CrossRef
14.
go back to reference Su Y, Evans AGR, Brunnschweiler A (1996) Micromachined silicon cantilever paddles with piezoresistive readout for flow sensing. J Micromechanics Microengineering 6:69–72.CrossRef Su Y, Evans AGR, Brunnschweiler A (1996) Micromachined silicon cantilever paddles with piezoresistive readout for flow sensing. J Micromechanics Microengineering 6:69–72.CrossRef
15.
go back to reference Lang HP, Baller MK, Berger R, Gerber C, Gimzewski JK, Battiston FM, Fornaro P, Ramseyer JP, Meyer E, Guntherodt HJ (1999) An artificial nose based on a micromechanical cantilever array. Anal Chim Acta 393:59–65.CrossRef Lang HP, Baller MK, Berger R, Gerber C, Gimzewski JK, Battiston FM, Fornaro P, Ramseyer JP, Meyer E, Guntherodt HJ (1999) An artificial nose based on a micromechanical cantilever array. Anal Chim Acta 393:59–65.CrossRef
16.
go back to reference Alvarez M, Calle A, Tamayo J, Lechuga LM, Abad A, Montoya A (2003) Development of nanomechanical biosensors for detection of the pesticide DDT. Biosens Bioelectron 18:649–653.CrossRef Alvarez M, Calle A, Tamayo J, Lechuga LM, Abad A, Montoya A (2003) Development of nanomechanical biosensors for detection of the pesticide DDT. Biosens Bioelectron 18:649–653.CrossRef
17.
go back to reference Baselt DR, Fruhberger B, Klaassen E, Cemalovic S, Britton CL Jr, Patel SV, Mlsna TE, McCorkle D, Warmack B (2003) Design and performance of a microcantilever-based hydrogen sensor. Sens Actuators, B 88:120–131.CrossRef Baselt DR, Fruhberger B, Klaassen E, Cemalovic S, Britton CL Jr, Patel SV, Mlsna TE, McCorkle D, Warmack B (2003) Design and performance of a microcantilever-based hydrogen sensor. Sens Actuators, B 88:120–131.CrossRef
18.
go back to reference Gunter RL, Delinger WD, Porter TL, Stewart R, Reed J (2005). Hydration level monitoring using embedded piezoresistive microcantilever sensors. Med Eng Phys 27:215–220.CrossRef Gunter RL, Delinger WD, Porter TL, Stewart R, Reed J (2005). Hydration level monitoring using embedded piezoresistive microcantilever sensors. Med Eng Phys 27:215–220.CrossRef
19.
go back to reference Ji H-F, Thundat T (2002) In situ detection of calcium ions with chemically modified microcantilevers. Biosens Bioelectron 17:337–343.CrossRef Ji H-F, Thundat T (2002) In situ detection of calcium ions with chemically modified microcantilevers. Biosens Bioelectron 17:337–343.CrossRef
20.
go back to reference Pinnaduwage LA, Thundat T, Hawk JE, Hedden DL, Britt PF, Houser EJ, Stepnowski S, McGill RA, Bubb D (2004) Detection of 2,4-dinitrotoluene using microcantilever sensors. Sens Actuators, B 99:223–229.CrossRef Pinnaduwage LA, Thundat T, Hawk JE, Hedden DL, Britt PF, Houser EJ, Stepnowski S, McGill RA, Bubb D (2004) Detection of 2,4-dinitrotoluene using microcantilever sensors. Sens Actuators, B 99:223–229.CrossRef
21.
go back to reference Porter TL, Eastman MP, Macomber C, Delinger WG, Zhine R (2003) An embedded polymer piezoresistive microcantilever sensor. Ultramicroscopy 97:365–369.CrossRef Porter TL, Eastman MP, Macomber C, Delinger WG, Zhine R (2003) An embedded polymer piezoresistive microcantilever sensor. Ultramicroscopy 97:365–369.CrossRef
22.
go back to reference Tamayo J, Humphris ADL, Malloy AM, Miles MJ (2001) Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86:167–173.CrossRef Tamayo J, Humphris ADL, Malloy AM, Miles MJ (2001) Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86:167–173.CrossRef
23.
go back to reference Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M, Ruan G (2003) Self-excited piezoelectric microcantilever for gas detection. Microelectron Eng 69:37–46.CrossRef Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M, Ruan G (2003) Self-excited piezoelectric microcantilever for gas detection. Microelectron Eng 69:37–46.CrossRef
24.
go back to reference Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004) Attogram detection using nanoelectromechanical oscillators. J Appl Physi 75:3694–3703.CrossRef Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004) Attogram detection using nanoelectromechanical oscillators. J Appl Physi 75:3694–3703.CrossRef
25.
go back to reference Rodolphe M, Jensenius H, Thaysen J, Christensen CB, Boisen A (2002) Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors. Ultramicroscopy 91:29–36.CrossRef Rodolphe M, Jensenius H, Thaysen J, Christensen CB, Boisen A (2002) Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors. Ultramicroscopy 91:29–36.CrossRef
26.
go back to reference Baselt DR, Lee GU, Colton RJ (1996) Biosensor based on force microscope technology. J Vac Sci Technol, B 14:789–793.CrossRef Baselt DR, Lee GU, Colton RJ (1996) Biosensor based on force microscope technology. J Vac Sci Technol, B 14:789–793.CrossRef
27.
go back to reference Raiteri R, Grattarola M, Butt H-J, Skladal P (2001) Micromechanical cantilever-based biosensors. Sens Actuators, B 79:115–126.CrossRef Raiteri R, Grattarola M, Butt H-J, Skladal P (2001) Micromechanical cantilever-based biosensors. Sens Actuators, B 79:115–126.CrossRef
28.
go back to reference Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol, B 19:2825–2828.CrossRef Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol, B 19:2825–2828.CrossRef
29.
go back to reference Gunter RL, Delinger WG, Manygoats K, Kooser A, Porter TL (2003) Viral detection using an embedded piezoresistive microcantilever sensor. Sens Actuators, A 107:219–224.CrossRef Gunter RL, Delinger WG, Manygoats K, Kooser A, Porter TL (2003) Viral detection using an embedded piezoresistive microcantilever sensor. Sens Actuators, A 107:219–224.CrossRef
30.
go back to reference Kooser A, Manygoats K, Eastman MP, Porter TL (2003) Investigation of the antigen antibody reaction between anti-bovine serum albumin (a-BSA) and bovine serum albumin (BSA) using piezoresistive microcantilever based sensors. Biosens Bioelectron 19:503–508.CrossRef Kooser A, Manygoats K, Eastman MP, Porter TL (2003) Investigation of the antigen antibody reaction between anti-bovine serum albumin (a-BSA) and bovine serum albumin (BSA) using piezoresistive microcantilever based sensors. Biosens Bioelectron 19:503–508.CrossRef
31.
go back to reference Yan X, Ji H-F, Lvov Y (2004) Modification of microcantilevers using layer-by-layer nanoassembly film for glucose measurement. Chem Phys Lett 396:34–37.CrossRef Yan X, Ji H-F, Lvov Y (2004) Modification of microcantilevers using layer-by-layer nanoassembly film for glucose measurement. Chem Phys Lett 396:34–37.CrossRef
32.
go back to reference Ilic B, Yang Y, Craighead HG (2004) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85:2604–2606.CrossRef Ilic B, Yang Y, Craighead HG (2004) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85:2604–2606.CrossRef
33.
go back to reference Alvarez M, Tamayo J (2005) Optical sequential readout of microcantilever arrays for biological detection. Sens Actuators, B 106:687–690.CrossRef Alvarez M, Tamayo J (2005) Optical sequential readout of microcantilever arrays for biological detection. Sens Actuators, B 106:687–690.CrossRef
34.
go back to reference Ziegler C, Gopel W, Hammerle H, Hatt H, Jung G, Laxhuber L, Schmidt HL, Schutz S, Vogtle F, Zell A (1998) Bioelectronic noses—a status report—part II [Review]. Biosens Bioelectron 13:539–571.CrossRef Ziegler C, Gopel W, Hammerle H, Hatt H, Jung G, Laxhuber L, Schmidt HL, Schutz S, Vogtle F, Zell A (1998) Bioelectronic noses—a status report—part II [Review]. Biosens Bioelectron 13:539–571.CrossRef
35.
go back to reference Vadgama P, Crump PW (1992) Biosensors: recent trends. Analyst 117:1657–1670.CrossRef Vadgama P, Crump PW (1992) Biosensors: recent trends. Analyst 117:1657–1670.CrossRef
36.
go back to reference Petrenko VA, Smith GP (2000) Phages from landscape libraries as substitute antibodies. Protein Eng 13:589–592.CrossRef Petrenko VA, Smith GP (2000) Phages from landscape libraries as substitute antibodies. Protein Eng 13:589–592.CrossRef
37.
go back to reference Petrenko VA, Smith GP, Mazooji MM, Quinn T (2002) Alpha-helically constrained phage display library. Protein Eng 15:943–950.CrossRef Petrenko VA, Smith GP, Mazooji MM, Quinn T (2002) Alpha-helically constrained phage display library. Protein Eng 15:943–950.CrossRef
38.
go back to reference Petrenko VA, Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J Microbiol Methods 53:253–262.CrossRef Petrenko VA, Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J Microbiol Methods 53:253–262.CrossRef
39.
go back to reference Shih WY, Li XP, Gu HM, Shih WH, Aksay IA (2001) Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J Appl Physi 89:1497–1505.CrossRef Shih WY, Li XP, Gu HM, Shih WH, Aksay IA (2001) Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J Appl Physi 89:1497–1505.CrossRef
40.
go back to reference De Silva CW (1999) Vibration: fundamentals and practice. CRC, Boca Raton. De Silva CW (1999) Vibration: fundamentals and practice. CRC, Boca Raton.
41.
42.
go back to reference Thomson WT (1969) Vibration theory & applications, 1st ed. Allen, London. Thomson WT (1969) Vibration theory & applications, 1st ed. Allen, London.
43.
go back to reference Blevins RD (1978) Formulas for natural frequency and mode shape. Van Nostrand, New York. Blevins RD (1978) Formulas for natural frequency and mode shape. Van Nostrand, New York.
44.
go back to reference Yahiaoui R, Bosseboeuf A (2004) Cantilever microbeams: modeling of the dynamical behaviour and material characterization. Presented at 5th International conference on thermal and mechanical simulation and experiments in micro-electronics and micro-systems, Europe. Yahiaoui R, Bosseboeuf A (2004) Cantilever microbeams: modeling of the dynamical behaviour and material characterization. Presented at 5th International conference on thermal and mechanical simulation and experiments in micro-electronics and micro-systems, Europe.
45.
go back to reference Lochon F, Dufour I, Rebiere D (2005) An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions. Sens Actuators, B 108:979–985.CrossRef Lochon F, Dufour I, Rebiere D (2005) An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions. Sens Actuators, B 108:979–985.CrossRef
46.
go back to reference Espinosa HD, Peng B, Prorok BC, Moldovan N, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2003) Fracture strength of ultrananocrystalline diamond thin films—identification of Weibull parameters. J Appl Physi 94:6076–6084.CrossRef Espinosa HD, Peng B, Prorok BC, Moldovan N, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2003) Fracture strength of ultrananocrystalline diamond thin films—identification of Weibull parameters. J Appl Physi 94:6076–6084.CrossRef
47.
go back to reference Espinosa HD, Prorok BC, Peng B, Kim KH, Moldovan N, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2003) Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices. Exp Mech 43:256–268.CrossRef Espinosa HD, Prorok BC, Peng B, Kim KH, Moldovan N, Auciello O, Carlisle JA, Gruen DM, Mancini DC (2003) Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices. Exp Mech 43:256–268.CrossRef
48.
go back to reference Hansen KM, Thundat T (2005) Microcantilever biosensors. Methods 37:57–64.CrossRef Hansen KM, Thundat T (2005) Microcantilever biosensors. Methods 37:57–64.CrossRef
49.
go back to reference Pinnaduwage LA, Ji HF, Thundat T (2005) Moore’s law in homeland defense: an integrated sensor platform based on silicon microcantilevers. IEEE Sens J 5:774–785.CrossRef Pinnaduwage LA, Ji HF, Thundat T (2005) Moore’s law in homeland defense: an integrated sensor platform based on silicon microcantilevers. IEEE Sens J 5:774–785.CrossRef
50.
go back to reference Dareing DW, Tian F, Thundat T (2006) Effective mass and flow patterns of fluids surrounding microcantilevers. Ultramicroscopy 106:789–794.CrossRef Dareing DW, Tian F, Thundat T (2006) Effective mass and flow patterns of fluids surrounding microcantilevers. Ultramicroscopy 106:789–794.CrossRef
51.
go back to reference Baker SP, Nix WD (1994) Mechanical-properties of compositionally modulated Au–Ni Thin-Films—nanoindentation and microcantilever deflection experiments. J Mater Res 9:3131–3145. Baker SP, Nix WD (1994) Mechanical-properties of compositionally modulated Au–Ni Thin-Films—nanoindentation and microcantilever deflection experiments. J Mater Res 9:3131–3145.
52.
go back to reference Schweitz JA (1992) Mechanical characterization of thin-films by micromechanical techniques. MRS Bull 17:34–45. Schweitz JA (1992) Mechanical characterization of thin-films by micromechanical techniques. MRS Bull 17:34–45.
53.
go back to reference Weihs TP, Hong S, Bravman JC, Nix WD (1988) Mechanical deflection of cantilever microbeams—a new technique for testing the mechanical-properties of thin-films. J Mater Res 3:931–942. Weihs TP, Hong S, Bravman JC, Nix WD (1988) Mechanical deflection of cantilever microbeams—a new technique for testing the mechanical-properties of thin-films. J Mater Res 3:931–942.
54.
go back to reference Weihs TP, Hong S, Bravman JC, Nix WD (1989) Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams. Mater Res Soc Symp Proc 402:87–92. Weihs TP, Hong S, Bravman JC, Nix WD (1989) Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams. Mater Res Soc Symp Proc 402:87–92.
55.
go back to reference Kraft O, Volkert CA (2001) Mechanical testing of thin films and small structures. Adv Eng Mater 3:99–110.CrossRef Kraft O, Volkert CA (2001) Mechanical testing of thin films and small structures. Adv Eng Mater 3:99–110.CrossRef
56.
go back to reference Florando JN, Nix WD (2005) A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates. J Mech Phys Solids 53:619–638.MATHCrossRef Florando JN, Nix WD (2005) A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates. J Mech Phys Solids 53:619–638.MATHCrossRef
57.
go back to reference Kloek B (2004) Piezoresistive sensors. In: Gopel W, Hesse J, Zemel JN (eds) Sensors. VHC Verlagsgesellschaft, Weinheim, Germany, pp 145–172. Kloek B (2004) Piezoresistive sensors. In: Gopel W, Hesse J, Zemel JN (eds) Sensors. VHC Verlagsgesellschaft, Weinheim, Germany, pp 145–172.
58.
go back to reference Harley JA (2002) Advances in piezoresistive probes for atomic force microscopy. Stanford University. Harley JA (2002) Advances in piezoresistive probes for atomic force microscopy. Stanford University.
59.
go back to reference Dao DV, Okada S, Dau VT, Toriyama T, Sugiyama S (2004) Development of a 3-DOF silicon piezoresistive micro accelerometer. IEEE, Proceedings of the 2004 International Symposium on Micro-Nanomechatronics and Human Science, pp 271–276. Dao DV, Okada S, Dau VT, Toriyama T, Sugiyama S (2004) Development of a 3-DOF silicon piezoresistive micro accelerometer. IEEE, Proceedings of the 2004 International Symposium on Micro-Nanomechatronics and Human Science, pp 271–276.
Metadata
Title
Tailoring Beam Mechanics Towards Enhancing Detection of Hazardous Biological Species
Authors
S. Morshed
B.C. Prorok
Publication date
01-06-2007
Published in
Experimental Mechanics / Issue 3/2007
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-006-9015-7

Other articles of this Issue 3/2007

Experimental Mechanics 3/2007 Go to the issue

Premium Partners