Skip to main content
Top
Published in: Journal of Materials Science 14/2018

12-04-2018 | Energy materials

Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage

Authors: Yuxiang Chen, Jie Li, Yanqing Lai, Junming Li, Zhian Zhang

Published in: Journal of Materials Science | Issue 14/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hard carbons appear to be promising anode candidates in high-performance sodium-ion batteries (SIBs) for large-scale stationary energy storage due to their large interlayer distance and amorphous structure, which facilitate sodium ions insertion/desertion. However, several major hurdles to address are poor rate performances and the low initial coulombic efficiency (ICE). Herein, a facile strategy to tailor hard carbons with graphitic nanostructures and rational specific surface area is proposed to improve sodium storage. Resin-derived carbon nanobroccolis (CNB) with in situ decorated graphitic nanostructures have been successfully synthesized by self-assembly and low-temperature catalytic carbonization process. As a result, attribute to in situ tailored graphitic nanostructures in hard carbons and rational specific surface area, CNB electrodes possess less charge transfer resistance and excellent sodium ions diffusion kinetics and successfully achieve fast and efficient sodium storage. When used as anode for sodium-ion batteries, CNB electrodes exhibit excellent high-rate capability of 137 mAh g−1 at 1000 mA g−1 and enhanced ICE of 52.6%. Our strategy reported here opens a door to design high-performance carbon anode materials for SIBs particularly focusing on efficient sodium ions storage and fast sodium ions diffusion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033–4040 Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033–4040
2.
go back to reference Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217CrossRef Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217CrossRef
3.
go back to reference Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef
4.
go back to reference Yang F, Zhang Z, Du K, Zhao X, Chen W, Lai Y, Li J (2015) Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91:88–95CrossRef Yang F, Zhang Z, Du K, Zhao X, Chen W, Lai Y, Li J (2015) Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91:88–95CrossRef
5.
go back to reference Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X (2015) Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94:189–195CrossRef Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X (2015) Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94:189–195CrossRef
6.
go back to reference Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS (2016) Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26:346–352CrossRef Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS (2016) Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26:346–352CrossRef
7.
go back to reference Kim H, Hong J, Park YU, Kim J, Hwang I, Kang K (2015) Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater 25:534–541CrossRef Kim H, Hong J, Park YU, Kim J, Hwang I, Kang K (2015) Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater 25:534–541CrossRef
8.
go back to reference Zhang SW, Lv W, Luo C, You CH, Zhang J, Pan ZZ, Kang FY, Yang QH (2016) Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater 3:18–23CrossRef Zhang SW, Lv W, Luo C, You CH, Zhang J, Pan ZZ, Kang FY, Yang QH (2016) Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater 3:18–23CrossRef
9.
go back to reference Li D, Zhang L, Chen H, Ding LX, Wang S, Wang H (2015) Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem Commun 51:16045–16048CrossRef Li D, Zhang L, Chen H, Ding LX, Wang S, Wang H (2015) Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem Commun 51:16045–16048CrossRef
10.
go back to reference Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRef Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRef
11.
go back to reference Väli R, Jänes A, Thomberg T, Lust E (2016) d-Glucose derived nanospheric hard carbon electrodes for room-temperature sodium-ion batteries. J Electrochem Soc 163:A1619–A1626CrossRef Väli R, Jänes A, Thomberg T, Lust E (2016) d-Glucose derived nanospheric hard carbon electrodes for room-temperature sodium-ion batteries. J Electrochem Soc 163:A1619–A1626CrossRef
12.
go back to reference Li Y, Xu S, Wu X, Yu J, Wang Y, Hu YS, Li H, Chen L, Huang X (2015) Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 3:71–77CrossRef Li Y, Xu S, Wu X, Yu J, Wang Y, Hu YS, Li H, Chen L, Huang X (2015) Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 3:71–77CrossRef
13.
go back to reference Hong KL, Qie L, Zeng R, Yi ZQ, Zhang W, Wang D, Yin W, Wu C, Fan QJ, Zhang WX, Huang YH (2014) Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A 2:12733–12738CrossRef Hong KL, Qie L, Zeng R, Yi ZQ, Zhang W, Wang D, Yin W, Wu C, Fan QJ, Zhang WX, Huang YH (2014) Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A 2:12733–12738CrossRef
14.
go back to reference Li Y, Hu YS, Qi X, Rong X, Li H, Huang X, Chen L (2016) Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater 5:191–197CrossRef Li Y, Hu YS, Qi X, Rong X, Li H, Huang X, Chen L (2016) Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater 5:191–197CrossRef
15.
go back to reference Li Y, Hu YS, Titirici MM, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRef Li Y, Hu YS, Titirici MM, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRef
16.
go back to reference Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L (2016) Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater 6:1600377CrossRef Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L (2016) Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater 6:1600377CrossRef
17.
go back to reference Zheng P, Liu T, Guo S (2016) Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. Sci Rep 6:35620CrossRef Zheng P, Liu T, Guo S (2016) Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. Sci Rep 6:35620CrossRef
18.
go back to reference Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240CrossRef Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240CrossRef
19.
go back to reference Li Y, Paranthaman MP, Akato K, Naskar AK, Levine AM, Lee RJ, Kim SO, Zhang J, Dai S, Manthiram A (2016) Tire-derived carbon composite anodes for sodium-ion batteries. J Power Sources 316:232–238CrossRef Li Y, Paranthaman MP, Akato K, Naskar AK, Levine AM, Lee RJ, Kim SO, Zhang J, Dai S, Manthiram A (2016) Tire-derived carbon composite anodes for sodium-ion batteries. J Power Sources 316:232–238CrossRef
20.
go back to reference Liu P, Li Y, Hu YS, Li H, Chen L, Huang X (2016) A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A 4:13046–13052CrossRef Liu P, Li Y, Hu YS, Li H, Chen L, Huang X (2016) A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A 4:13046–13052CrossRef
21.
go back to reference Kado Y, Soneda Y (2016) MgO-templated carbon as a negative electrode material for Na-ion capacitors. J Phys Chem Solid 99:167–172CrossRef Kado Y, Soneda Y (2016) MgO-templated carbon as a negative electrode material for Na-ion capacitors. J Phys Chem Solid 99:167–172CrossRef
22.
go back to reference Elkhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903CrossRef Elkhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903CrossRef
23.
go back to reference Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB (2016) Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc 138:14915–14922CrossRef Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB (2016) Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc 138:14915–14922CrossRef
24.
go back to reference Yu ZL, Li GC, Fechler N, Yang N, Ma ZY, Wang X, Antonietti M, Yu SH (2016) Polymerization under hypersaline conditions: a robust route to phenolic polymer-derived carbon aerogels. Angew Chem Int Edit 128:14843–14847CrossRef Yu ZL, Li GC, Fechler N, Yang N, Ma ZY, Wang X, Antonietti M, Yu SH (2016) Polymerization under hypersaline conditions: a robust route to phenolic polymer-derived carbon aerogels. Angew Chem Int Edit 128:14843–14847CrossRef
25.
go back to reference Nelson KM, Mahurin SM, Mayes RT, Williamson B, Teague CM, Binder AJ, Baggetto L, Veith GM, Dai S (2016) Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors. Micro Meso Mater 222:94–103CrossRef Nelson KM, Mahurin SM, Mayes RT, Williamson B, Teague CM, Binder AJ, Baggetto L, Veith GM, Dai S (2016) Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors. Micro Meso Mater 222:94–103CrossRef
26.
go back to reference Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bio Tech 98:1655–1663CrossRef Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bio Tech 98:1655–1663CrossRef
27.
go back to reference Shi L, Chen K, Du R, Bachmatiuk A, Rummeli MH, Priydarshi MK, Zhang Y, Manivannan A, Liu Z (2015) Direct synthesis of few-layer graphene on NaCl crystals. Small 11:6302–6308CrossRef Shi L, Chen K, Du R, Bachmatiuk A, Rummeli MH, Priydarshi MK, Zhang Y, Manivannan A, Liu Z (2015) Direct synthesis of few-layer graphene on NaCl crystals. Small 11:6302–6308CrossRef
28.
go back to reference Lu AH, Li WC, Hao GP, Spliethoff B, Bongard HJ, Schaack BB, Schuth F (2010) Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew Chem Int Edit 49:1615–1618CrossRef Lu AH, Li WC, Hao GP, Spliethoff B, Bongard HJ, Schaack BB, Schuth F (2010) Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew Chem Int Edit 49:1615–1618CrossRef
29.
go back to reference Dong Y, Yu M, Wang Z, Liu Y, Wang X, Zhao Z, Qiu J (2016) A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv Funct Mater 26:7590–7598CrossRef Dong Y, Yu M, Wang Z, Liu Y, Wang X, Zhao Z, Qiu J (2016) A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv Funct Mater 26:7590–7598CrossRef
30.
go back to reference Campos-Roldan CA, Ramos-Sanchez G, Gonzalez-Huerta RG, Vargas Garcia JR, Balbuena PB, Alonso-vante N (2016) Influence of sp(3)-sp(2) carbon nanodomains on metal/support interaction, catalyst durability, and catalytic activity for the oxygen reduction reaction. ACS Appl Mater Interfaces 8:23260–23269CrossRef Campos-Roldan CA, Ramos-Sanchez G, Gonzalez-Huerta RG, Vargas Garcia JR, Balbuena PB, Alonso-vante N (2016) Influence of sp(3)-sp(2) carbon nanodomains on metal/support interaction, catalyst durability, and catalytic activity for the oxygen reduction reaction. ACS Appl Mater Interfaces 8:23260–23269CrossRef
31.
go back to reference Yan Y, Yin YX, Guo YG, Wan LJ (2014) A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv Energy Mater 4:1301584CrossRef Yan Y, Yin YX, Guo YG, Wan LJ (2014) A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv Energy Mater 4:1301584CrossRef
32.
go back to reference Su D, Cortie M, Wang G (2016) Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv Energy Mater 7:1602014CrossRef Su D, Cortie M, Wang G (2016) Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv Energy Mater 7:1602014CrossRef
34.
go back to reference Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY (2012) Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 24:3562–3567CrossRef Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY (2012) Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 24:3562–3567CrossRef
35.
go back to reference Wang H, Yu W, Mao N, Shi J, Liu W (2016) Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. Micro Meso Mater 227:1–8CrossRef Wang H, Yu W, Mao N, Shi J, Liu W (2016) Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. Micro Meso Mater 227:1–8CrossRef
36.
go back to reference Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129CrossRef Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129CrossRef
37.
go back to reference Qu Y, Zhang Z, Du K, Chen W, Lai Y, Liu Y, Li J (2016) Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 105:103–112CrossRef Qu Y, Zhang Z, Du K, Chen W, Lai Y, Liu Y, Li J (2016) Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 105:103–112CrossRef
38.
go back to reference Ou J, Yang L, Zhang Z, Xi X (2017) Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Micro Meso Mater 237:23–30CrossRef Ou J, Yang L, Zhang Z, Xi X (2017) Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Micro Meso Mater 237:23–30CrossRef
39.
go back to reference Luo XF, Yang CH, Chang JK (2015) Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets. J Mater Chem A 3:17282–17289CrossRef Luo XF, Yang CH, Chang JK (2015) Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets. J Mater Chem A 3:17282–17289CrossRef
40.
go back to reference Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef
41.
go back to reference Peng XX, Lu YQ, Zhou LL, Sheng T, Shen SY, Liao HG, Huang L, Li JT, Sun SG (2017) Graphitized porous carbon materials with high sulfur loading for lithium–sulfur batteries. Nano Energy 32:503–510CrossRef Peng XX, Lu YQ, Zhou LL, Sheng T, Shen SY, Liao HG, Huang L, Li JT, Sun SG (2017) Graphitized porous carbon materials with high sulfur loading for lithium–sulfur batteries. Nano Energy 32:503–510CrossRef
42.
go back to reference Zhang Y, Chen L, Meng Y, Xie J, Guo Y, Xiao D (2016) Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J Power Sources 335:20–30CrossRef Zhang Y, Chen L, Meng Y, Xie J, Guo Y, Xiao D (2016) Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J Power Sources 335:20–30CrossRef
43.
go back to reference Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63CrossRef Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63CrossRef
44.
go back to reference Wang HL, Shi ZQ, Jin J, Chong C-B, Wang CY (2015) Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method. J Electroanalyt Chem 755:87–91CrossRef Wang HL, Shi ZQ, Jin J, Chong C-B, Wang CY (2015) Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method. J Electroanalyt Chem 755:87–91CrossRef
45.
go back to reference Sun Y, Tang J, Zhang K, Yuan J, Li J, Zhu DM, Ozawa K, Qin LC (2017) Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale. 9:2585–2595CrossRef Sun Y, Tang J, Zhang K, Yuan J, Li J, Zhu DM, Ozawa K, Qin LC (2017) Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale. 9:2585–2595CrossRef
46.
go back to reference Lv X, Song J, Lai Y, Fang J, Li J, Zhang Z (2016) Ultrafine nanoparticles assembled Mo2C nanoplates as promising anode materials for sodium ion batteries with excellent performance. J Energy Storage 8:205–211CrossRef Lv X, Song J, Lai Y, Fang J, Li J, Zhang Z (2016) Ultrafine nanoparticles assembled Mo2C nanoplates as promising anode materials for sodium ion batteries with excellent performance. J Energy Storage 8:205–211CrossRef
48.
go back to reference Xiong W, Wang Z, Zhang J, Shang C, Yang M, He L, Lu Z (2017) Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Mater 7:229–235CrossRef Xiong W, Wang Z, Zhang J, Shang C, Yang M, He L, Lu Z (2017) Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Mater 7:229–235CrossRef
49.
go back to reference Liu Y, Zhang N, Liu X, Chen C, Fan LZ, Jiao L (2017) Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. Energy Storage Mater 9:170–178CrossRef Liu Y, Zhang N, Liu X, Chen C, Fan LZ, Jiao L (2017) Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. Energy Storage Mater 9:170–178CrossRef
50.
go back to reference Zou G, Hou H, Zhao G, Huang Z, Ge P, Ji X (2017) Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chem 19:4622–4632CrossRef Zou G, Hou H, Zhao G, Huang Z, Ge P, Ji X (2017) Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chem 19:4622–4632CrossRef
51.
go back to reference Xia X, Chao D, Zhang Y, Zhan J, Zhong Y, Wang X, Fan HJ (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium ion storage. Small 12:3048–3058CrossRef Xia X, Chao D, Zhang Y, Zhan J, Zhong Y, Wang X, Fan HJ (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium ion storage. Small 12:3048–3058CrossRef
53.
go back to reference Balogun MS, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRef Balogun MS, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRef
55.
go back to reference Balogun MS, Qiu W, Lyu F, Luo Y, Meng H, Li J, Tong Y (2016) All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 26:446–455CrossRef Balogun MS, Qiu W, Lyu F, Luo Y, Meng H, Li J, Tong Y (2016) All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 26:446–455CrossRef
Metadata
Title
Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage
Authors
Yuxiang Chen
Jie Li
Yanqing Lai
Junming Li
Zhian Zhang
Publication date
12-04-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 14/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2295-3

Other articles of this Issue 14/2018

Journal of Materials Science 14/2018 Go to the issue

Premium Partners