Skip to main content
Top
Published in: Journal of Electronic Materials 8/2023

16-05-2023 | Original Research Article

Tailoring the Back Contact Properties of Cu2ZnSn(S,Se)4 Thin Film with Mo-Foil by Introducing a Transparent CuCrO2 Buffer Layer

Authors: Jiaxiong Xu, Xiaoshuai Wu

Published in: Journal of Electronic Materials | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chalcogenide Cu2ZnSn(S,Se)4 (CZTSSe) is a promising absorber material for photovoltaic applications. When CZTSSe thin film is deposited on an Mo substrate, a Mo(S,Se)2 layer easily forms between the CZTSSe and the Mo, which is detrimental to the back contact property of the CZTSSe. This work proposes a useful way to inhibit the formation of Mo(S,Se)2 by sputtering a CuCrO2 layer on a Mo-foil substrate before the deposition of the CZTSSe. The effects of CuCrO2 thickness on the crystalline structures, morphologies, and electrical properties of the fabricated samples were studied. The results showed that the insertion of the CuCrO2 layer prevented the formation of Mo(S,Se)2. As the thickness of the CuCrO2 increased, the thickness of the Mo(S,Se)2 layer decreased. The Mo(S,Se)2 layer was absent from the cross-sectional scanning electron microscopy image when the CuCrO2 thickness exceeded 85 nm. The back contact resistance of CZTSSe decreased monotonously as the CuCrO2 layer thickened due to the reduction in the Mo(S,Se)2 layer thickness. Therefore, by inserting a CuCrO2 layer to separate the CZTSSe and the Mo-foil, the formation of the Mo(S,Se)2 layer between them was effectively suppressed, and the back contact properties of the CZTSSe thin film were significantly enhanced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Kaur and M. Kumar, Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review. J. Mater. Chem. A 8, 21547 (2020).CrossRef K. Kaur and M. Kumar, Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review. J. Mater. Chem. A 8, 21547 (2020).CrossRef
2.
go back to reference S.N. Khan, S.J. Ge, Y.X. Huang, H. Xu, W.T. Yang, R.J. Hong, Y.H. Mai, E.N. Gu, X.Z. Lin, and G.W. Yang, Highly efficient Cu2ZnSn(S,Se)4 bifacial solar cell via a composition gradient strategy through the molecular ink. Sci. China Mater. 65, 612 (2022).CrossRef S.N. Khan, S.J. Ge, Y.X. Huang, H. Xu, W.T. Yang, R.J. Hong, Y.H. Mai, E.N. Gu, X.Z. Lin, and G.W. Yang, Highly efficient Cu2ZnSn(S,Se)4 bifacial solar cell via a composition gradient strategy through the molecular ink. Sci. China Mater. 65, 612 (2022).CrossRef
3.
go back to reference A.S. Nazligul, M.Q. Wang, and K.L. Choy, Recent development in earth-abundant kesterite materials and their applications. Sustainability 12, 5138 (2020).CrossRef A.S. Nazligul, M.Q. Wang, and K.L. Choy, Recent development in earth-abundant kesterite materials and their applications. Sustainability 12, 5138 (2020).CrossRef
4.
go back to reference B. Pani, S. Pillai, and U.P. Singh, Impact of capping during the formation of Cu2ZnSn(S,Se)4 thin films. Mater. Sci. Semicond. Process. 50, 55 (2016).CrossRef B. Pani, S. Pillai, and U.P. Singh, Impact of capping during the formation of Cu2ZnSn(S,Se)4 thin films. Mater. Sci. Semicond. Process. 50, 55 (2016).CrossRef
5.
go back to reference D. Pareek, K.R. Balasubramaniam, and P. Sharma, Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies. J. Mater. Sci. Mater. Electron. 28, 1199 (2017).CrossRef D. Pareek, K.R. Balasubramaniam, and P. Sharma, Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies. J. Mater. Sci. Mater. Electron. 28, 1199 (2017).CrossRef
6.
go back to reference Q.Y. Wen, Y. Li, J.J. Yan, J. Wang, and C.W. Wang, Growth of void-free Cu2ZnSn(S,Se)4 thin film by selenization Cu2ZnSnS4 precursor film from ethylene glycol-based solution. Superlattices Microstruct. 85, 331 (2015).CrossRef Q.Y. Wen, Y. Li, J.J. Yan, J. Wang, and C.W. Wang, Growth of void-free Cu2ZnSn(S,Se)4 thin film by selenization Cu2ZnSnS4 precursor film from ethylene glycol-based solution. Superlattices Microstruct. 85, 331 (2015).CrossRef
7.
go back to reference C. Li, M. Cao, J. Huang, Y. Sun, L.J. Wang, and Y. Shen, Effects of S and Se contents on the physical and photovoltaic properties of Cu2ZnSn(SxSe1−x)4 nanoparticles. J. Alloys Compd. 616, 542 (2014).CrossRef C. Li, M. Cao, J. Huang, Y. Sun, L.J. Wang, and Y. Shen, Effects of S and Se contents on the physical and photovoltaic properties of Cu2ZnSn(SxSe1−x)4 nanoparticles. J. Alloys Compd. 616, 542 (2014).CrossRef
8.
go back to reference J.L. Wang, J.Z. Zhou, X. Xu, F.Q. Meng, C.X. Xiang, L.C. Lou, K. Yin, B.W. Duan, H.J. Wu, and J.J. Shi, Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells. Adv. Mater. 34, 2202858 (2022).CrossRef J.L. Wang, J.Z. Zhou, X. Xu, F.Q. Meng, C.X. Xiang, L.C. Lou, K. Yin, B.W. Duan, H.J. Wu, and J.J. Shi, Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells. Adv. Mater. 34, 2202858 (2022).CrossRef
9.
go back to reference M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, and X.J. Hao, Solar cell efficiency tables (version 60). Prog. Photovoltaics 30, 687 (2022).CrossRef M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, and X.J. Hao, Solar cell efficiency tables (version 60). Prog. Photovoltaics 30, 687 (2022).CrossRef
10.
go back to reference J. Liu, B. Yao, Y.F. Li, Z.H. Ding, T. Wang, J.Y. Zhang, C.K. Wang, X.Y. Yang, and H. Zhao, Comparative study on effect of Mo-Cr bilayer and Mo back electrodes on performance of Cu2ZnSn(S,Se)4 solar cell. Micro Nanostruct. 163, 107139 (2022).CrossRef J. Liu, B. Yao, Y.F. Li, Z.H. Ding, T. Wang, J.Y. Zhang, C.K. Wang, X.Y. Yang, and H. Zhao, Comparative study on effect of Mo-Cr bilayer and Mo back electrodes on performance of Cu2ZnSn(S,Se)4 solar cell. Micro Nanostruct. 163, 107139 (2022).CrossRef
11.
go back to reference S.W. Shin, K.V. Gurav, C.W. Hong, J. Gwak, H.R. Choi, S.A. Vanalakar, J.H. Yun, J.Y. Lee, J.H. Moon, and J.H. Kim, Phase segregations and thickness of the Mo(S,Se)2 layer in Cu2ZnSn(S, Se)4 solar cells at different sulfurization temperatures. Sol. Energy Mater. Sol. Cells 143, 480 (2015).CrossRef S.W. Shin, K.V. Gurav, C.W. Hong, J. Gwak, H.R. Choi, S.A. Vanalakar, J.H. Yun, J.Y. Lee, J.H. Moon, and J.H. Kim, Phase segregations and thickness of the Mo(S,Se)2 layer in Cu2ZnSn(S, Se)4 solar cells at different sulfurization temperatures. Sol. Energy Mater. Sol. Cells 143, 480 (2015).CrossRef
12.
go back to reference J. Kim, S. Park, S. Ryu, J. Oh, and B. Shin, Improving the open-circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation. Prog. Photovolt. 25, 308 (2017).CrossRef J. Kim, S. Park, S. Ryu, J. Oh, and B. Shin, Improving the open-circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation. Prog. Photovolt. 25, 308 (2017).CrossRef
13.
go back to reference J.J. Li, Y. Zhang, W. Zhao, D. Nam, H. Cheong, L. Wu, Z.Q. Zhou, and Y. Sun, A temporary barrier effect of the alloy layer during selenization: tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells. Adv. Energy Mater. 5, 1402178 (2015).CrossRef J.J. Li, Y. Zhang, W. Zhao, D. Nam, H. Cheong, L. Wu, Z.Q. Zhou, and Y. Sun, A temporary barrier effect of the alloy layer during selenization: tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells. Adv. Energy Mater. 5, 1402178 (2015).CrossRef
14.
go back to reference S.J. Ge, H. Xu, S.N. Khan, W.T. Yang, R.J. Hong, Y.H. Mai, E.N. Gu, X.Z. Lin, and G.W. Yang, A universal and facile method of tailoring the thickness of Mo(Sx, Se1−x)2, contributing to highly efficient flexible Cu2ZnSn(S,Se)4) solar cells. Sol. RRL 5, 2100598 (2021).CrossRef S.J. Ge, H. Xu, S.N. Khan, W.T. Yang, R.J. Hong, Y.H. Mai, E.N. Gu, X.Z. Lin, and G.W. Yang, A universal and facile method of tailoring the thickness of Mo(Sx, Se1−x)2, contributing to highly efficient flexible Cu2ZnSn(S,Se)4) solar cells. Sol. RRL 5, 2100598 (2021).CrossRef
15.
go back to reference J.J. Li, H.X. Wang, L. Wu, C. Chen, Z.Q. Zhou, F.F. Liu, Y. Sun, J.B. Han, and Y. Zhang, Growth of Cu2ZnSnSe4 film under controllable Se vapor composition and impact of low Cu content on solar cell efficiency. ACS Appl. Mater. Interfaces 8, 10283 (2016).CrossRef J.J. Li, H.X. Wang, L. Wu, C. Chen, Z.Q. Zhou, F.F. Liu, Y. Sun, J.B. Han, and Y. Zhang, Growth of Cu2ZnSnSe4 film under controllable Se vapor composition and impact of low Cu content on solar cell efficiency. ACS Appl. Mater. Interfaces 8, 10283 (2016).CrossRef
16.
go back to reference B. Shin, N.A. Bojarczuk, and S. Guha, On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Appl. Phys. Lett. 102, 091907 (2013).CrossRef B. Shin, N.A. Bojarczuk, and S. Guha, On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Appl. Phys. Lett. 102, 091907 (2013).CrossRef
17.
go back to reference X.S. Wu, J.X. Xu, and C.N. Zhuang, Influences of selenization temperature on the properties of CZTSSe thin films and CZTSSe/Mo interfaces. J. Mater. Sci. Mater. Electron. 32, 2837 (2021).CrossRef X.S. Wu, J.X. Xu, and C.N. Zhuang, Influences of selenization temperature on the properties of CZTSSe thin films and CZTSSe/Mo interfaces. J. Mater. Sci. Mater. Electron. 32, 2837 (2021).CrossRef
18.
go back to reference X.S. Wu, and J.X. Xu, Effect of pre-annealing of Mo foil substrate on CZTSSe thin films and Mo(S,Se)2 interface layer. Chalcogenide Lett. 19, 599 (2022).CrossRef X.S. Wu, and J.X. Xu, Effect of pre-annealing of Mo foil substrate on CZTSSe thin films and Mo(S,Se)2 interface layer. Chalcogenide Lett. 19, 599 (2022).CrossRef
19.
go back to reference K. Shi, B. Yao, Y.F. Li, Z.H. Ding, R. Deng, Y.R. Sui, Z.Z. Zhang, H.F. Zhao, and L.G. Zhang, Modification of back electrode with WO3 layer and its effect on Cu2ZnSn(S,Se)4-based solar cells. Superlattices Microstruct. 113, 328 (2018).CrossRef K. Shi, B. Yao, Y.F. Li, Z.H. Ding, R. Deng, Y.R. Sui, Z.Z. Zhang, H.F. Zhao, and L.G. Zhang, Modification of back electrode with WO3 layer and its effect on Cu2ZnSn(S,Se)4-based solar cells. Superlattices Microstruct. 113, 328 (2018).CrossRef
20.
go back to reference X.H. Zhang, B. Yao, Y.F. Li, Z.H. Ding, H.F. Zhao, L.G. Zhang, and Z.Z. Zhang, Influence of WSe2 buffer layer at back electrode on performance of Cu2ZnSn(S,Se)4 solar cells. Sol. Energy 199, 128 (2020).CrossRef X.H. Zhang, B. Yao, Y.F. Li, Z.H. Ding, H.F. Zhao, L.G. Zhang, and Z.Z. Zhang, Influence of WSe2 buffer layer at back electrode on performance of Cu2ZnSn(S,Se)4 solar cells. Sol. Energy 199, 128 (2020).CrossRef
21.
go back to reference Y. Zeng, Z. Shen, X. Wu, D.X. Wang, Y.L. Wang, Y.L. Sun, L. Wu, and Y. Zhang, Back contact modification of the optoelectronic device with transition metal dichalcogenide VSe2 film drives solar cell efficiency. J. Materiomics 7, 470 (2021).CrossRef Y. Zeng, Z. Shen, X. Wu, D.X. Wang, Y.L. Wang, Y.L. Sun, L. Wu, and Y. Zhang, Back contact modification of the optoelectronic device with transition metal dichalcogenide VSe2 film drives solar cell efficiency. J. Materiomics 7, 470 (2021).CrossRef
22.
go back to reference X.Y. Yang, B. Yao, Z.H. Ding, R. Deng, M. Zhao, and Y.F. Li, Role of zinc tin oxide passivation layer at back electrode interface in improving efficiency of Cu2ZnSn(S,Se)4 solar cells. Micro Nanostruct. 163, 107133 (2022).CrossRef X.Y. Yang, B. Yao, Z.H. Ding, R. Deng, M. Zhao, and Y.F. Li, Role of zinc tin oxide passivation layer at back electrode interface in improving efficiency of Cu2ZnSn(S,Se)4 solar cells. Micro Nanostruct. 163, 107133 (2022).CrossRef
23.
go back to reference B. Xu, X.S. Lu, C.H. Ma, Y.L. Liu, R.J. Qi, R. Huang, Y. Chen, P.X. Yang, J.H. Chu, and L. Sun, MoO2 sacrificial layer for optimizing back contact interface of Cu2ZnSn(S,Se)4 solar cells. IEEE J. Photovolt. 10, 1191 (2020).CrossRef B. Xu, X.S. Lu, C.H. Ma, Y.L. Liu, R.J. Qi, R. Huang, Y. Chen, P.X. Yang, J.H. Chu, and L. Sun, MoO2 sacrificial layer for optimizing back contact interface of Cu2ZnSn(S,Se)4 solar cells. IEEE J. Photovolt. 10, 1191 (2020).CrossRef
24.
go back to reference J. Kim, J. Jang, M.P. Suryawanshi, M.R. He, J. Heo, D.S. Lee, H.R. Jung, E. Jo, M.G. Gang, and J.H. Kim, Effect of a graphene oxide intermediate layer in Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. A 8, 4920 (2020).CrossRef J. Kim, J. Jang, M.P. Suryawanshi, M.R. He, J. Heo, D.S. Lee, H.R. Jung, E. Jo, M.G. Gang, and J.H. Kim, Effect of a graphene oxide intermediate layer in Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. A 8, 4920 (2020).CrossRef
25.
go back to reference S. Zhuk, T.K.S. Wong, E. Tyukalova, A. Guchhait, D.H.L. Seng, S. Tripathy, T.I. Wong, M. Sharma, H. Medina, M. Duchamp, L.H. Wong, and G.K. Dalapati, Effect of TaN intermediate layer on the back contact reaction of sputter-deposited Cu poor Cu2ZnSnS4 and Mo. Appl. Surf. Sci. 471, 277 (2019).CrossRef S. Zhuk, T.K.S. Wong, E. Tyukalova, A. Guchhait, D.H.L. Seng, S. Tripathy, T.I. Wong, M. Sharma, H. Medina, M. Duchamp, L.H. Wong, and G.K. Dalapati, Effect of TaN intermediate layer on the back contact reaction of sputter-deposited Cu poor Cu2ZnSnS4 and Mo. Appl. Surf. Sci. 471, 277 (2019).CrossRef
26.
go back to reference S. Lopez-Marino, M. Placidi, A. Perez-Tomas, J. Llobet, V. Izquierdo-Roca, X. Fontane, A. Fairbrother, M. Espindola-Rodriguez, D. Sylla, A. Perez-Rodriguez, and E. Saucedo, Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J. Mater. Chem. A 1, 8338 (2013).CrossRef S. Lopez-Marino, M. Placidi, A. Perez-Tomas, J. Llobet, V. Izquierdo-Roca, X. Fontane, A. Fairbrother, M. Espindola-Rodriguez, D. Sylla, A. Perez-Rodriguez, and E. Saucedo, Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J. Mater. Chem. A 1, 8338 (2013).CrossRef
27.
go back to reference Z.M.T.F. Bai, S.C. Chen, S.S. Lin, Q. Shi, Y.B. Lu, S.M. Song, and H. Sun, Review in optoelectronic properties of p-type CuCrO2 transparent conductive films. Surf. Interfaces 22, 100824 (2021).CrossRef Z.M.T.F. Bai, S.C. Chen, S.S. Lin, Q. Shi, Y.B. Lu, S.M. Song, and H. Sun, Review in optoelectronic properties of p-type CuCrO2 transparent conductive films. Surf. Interfaces 22, 100824 (2021).CrossRef
28.
go back to reference C.Y. Chen, S. Sakthinathan, C.L. Yu, C.C. Wang, T. Chiu, and Q.F. Han, Preparation and characterization of delafossite CuCrO2 film on flexible substrate. Ceram. Int. 47, 23234 (2021).CrossRef C.Y. Chen, S. Sakthinathan, C.L. Yu, C.C. Wang, T. Chiu, and Q.F. Han, Preparation and characterization of delafossite CuCrO2 film on flexible substrate. Ceram. Int. 47, 23234 (2021).CrossRef
29.
go back to reference S.H. Lin, R.H. Yeh, C. Chu, and R.S. Yu, Effects of Mg doping on structural and optoelectronic properties of p-type semiconductor CuCrO2 thin films. Mater. Sci. Semicond. Process. 139, 106346 (2022).CrossRef S.H. Lin, R.H. Yeh, C. Chu, and R.S. Yu, Effects of Mg doping on structural and optoelectronic properties of p-type semiconductor CuCrO2 thin films. Mater. Sci. Semicond. Process. 139, 106346 (2022).CrossRef
30.
go back to reference T.W. Chiu, Y.C. Yang, A.C. Yeh, Y.P. Wang, and Y.W. Feng, Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition. Vacuum 87, 174 (2013).CrossRef T.W. Chiu, Y.C. Yang, A.C. Yeh, Y.P. Wang, and Y.W. Feng, Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition. Vacuum 87, 174 (2013).CrossRef
31.
go back to reference M. Asemi and M. Ghanaatshoar, Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram. Int. 42, 6664 (2016).CrossRef M. Asemi and M. Ghanaatshoar, Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram. Int. 42, 6664 (2016).CrossRef
32.
go back to reference J.H. Li, R.H. Yao, C. Xiong, Y.R. Liu, and K.W. Geng, Cu2ZnSn(S,Se)4 thin films preparation by using ammonium polysulfoselenide-based ink. Mater. Lett. 210, 20 (2018).CrossRef J.H. Li, R.H. Yao, C. Xiong, Y.R. Liu, and K.W. Geng, Cu2ZnSn(S,Se)4 thin films preparation by using ammonium polysulfoselenide-based ink. Mater. Lett. 210, 20 (2018).CrossRef
33.
go back to reference Y.P. Lin, T.E. Hsieh, Y.C. Chen, and K.P. Huang, Characteristics of Cu2ZnSn(SxSe1−x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment. Sol. Energy Mater. Sol. Cells 162, 55 (2017).CrossRef Y.P. Lin, T.E. Hsieh, Y.C. Chen, and K.P. Huang, Characteristics of Cu2ZnSn(SxSe1−x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment. Sol. Energy Mater. Sol. Cells 162, 55 (2017).CrossRef
34.
go back to reference J.Y. Zhang, Y.C. Yang, G.N. Cui, H. Alata, Y.M. Wang, and C.J. Zhu, Enhancing electrical properties of Cu2ZnSn(S,Se)4 thin films via trace Co incorporation. Mater. Chem. Phys. 262, 124318 (2021).CrossRef J.Y. Zhang, Y.C. Yang, G.N. Cui, H. Alata, Y.M. Wang, and C.J. Zhu, Enhancing electrical properties of Cu2ZnSn(S,Se)4 thin films via trace Co incorporation. Mater. Chem. Phys. 262, 124318 (2021).CrossRef
35.
go back to reference J. Kavalakkatt, X.Z. Lin, K. Kornhuber, P. Kusch, A. Ennaoui, S. Reich, and M.C. Lux-Steiner, Cu2ZnSn(S,Se)4 from CuxSnSy nanoparticle precursors on ZnO nanorod arrays. Thin Solid Films 535, 380 (2013).CrossRef J. Kavalakkatt, X.Z. Lin, K. Kornhuber, P. Kusch, A. Ennaoui, S. Reich, and M.C. Lux-Steiner, Cu2ZnSn(S,Se)4 from CuxSnSy nanoparticle precursors on ZnO nanorod arrays. Thin Solid Films 535, 380 (2013).CrossRef
36.
go back to reference Y. Havryliuk, M.Y. Valakh, V. Dzhagan, O. Greshchuk, V. Yukhymchuk, A. Raevskaya, O. Stroyuk, O. Selyshchev, N. Gaponik, and D.R.T. Zahn, Raman characterization of Cu2ZnSnS4 nanocrystals: phonon confinement effect and formation of CuxS phases. RSC Adv. 8, 30736 (2018).CrossRef Y. Havryliuk, M.Y. Valakh, V. Dzhagan, O. Greshchuk, V. Yukhymchuk, A. Raevskaya, O. Stroyuk, O. Selyshchev, N. Gaponik, and D.R.T. Zahn, Raman characterization of Cu2ZnSnS4 nanocrystals: phonon confinement effect and formation of CuxS phases. RSC Adv. 8, 30736 (2018).CrossRef
Metadata
Title
Tailoring the Back Contact Properties of Cu2ZnSn(S,Se)4 Thin Film with Mo-Foil by Introducing a Transparent CuCrO2 Buffer Layer
Authors
Jiaxiong Xu
Xiaoshuai Wu
Publication date
16-05-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10491-x

Other articles of this Issue 8/2023

Journal of Electronic Materials 8/2023 Go to the issue