Skip to main content
Top
Published in: Journal of Polymer Research 2/2019

01-02-2019 | ORIGINAL PAPER

Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism

Authors: Rahul Kumar, Kaushik Kumar, Sumit Bhowmik, Gautam Sarkhel

Published in: Journal of Polymer Research | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the graded micro-structure and high specific strength-stiffness, bamboo micro fillers are systematically utilized in reinforcing different thermoset and thermoplastic polymers as replacement of conventional glass and carbon fillers. In this work, micro-size bamboo particle fillers are reinforced in ‘specific grade’ thermoset epoxy matrix and its fracture properties has been evaluated by following linear elastic fracture mechanics. To enhance its compatibility with the polymer matrix and to reduce the hydrophilicity, the bamboo micro fillers are surface modified through alkaline treatment. The extent of surface modification and removal of lower weight polymers from filler surface are examined and established by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis and thermogravimetric analysis. The fracture properties of bamboo-epoxy composite material are observed to be increasing with the addition of bamboo fillers and the maximum value of fracture toughness is 0.678 MPa.m0.5 which is 32% higher than the same for neat epoxy samples. In addition, the mechanisms of notch initiated fracture propagation have also been explained for the understanding of stress singularity present at the preexisted crack tip.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4:2899–2916CrossRef Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4:2899–2916CrossRef
2.
3.
go back to reference Haque MM, Islam MS, Islam MN (2012) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res 19(5):9847CrossRef Haque MM, Islam MS, Islam MN (2012) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res 19(5):9847CrossRef
4.
go back to reference Rahman MM, Netravali AN, Tiimob BJ, Rangari VK (2014) Bioderived “green” composite from soy protein and eggshell Nanopowder. ACS Sustain Chem Eng 2:2329–2337CrossRef Rahman MM, Netravali AN, Tiimob BJ, Rangari VK (2014) Bioderived “green” composite from soy protein and eggshell Nanopowder. ACS Sustain Chem Eng 2:2329–2337CrossRef
5.
go back to reference Kumar R, Kumar K, Sahoo P, Bhowmik S (2014) Study of mechanical properties of wood dust reinforced epoxy composite. Procedia Mater Sci 6:551–556CrossRef Kumar R, Kumar K, Sahoo P, Bhowmik S (2014) Study of mechanical properties of wood dust reinforced epoxy composite. Procedia Mater Sci 6:551–556CrossRef
6.
go back to reference Anand P, Rajesh D, Kumar MS, Raj IS (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res 25(4):94CrossRef Anand P, Rajesh D, Kumar MS, Raj IS (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res 25(4):94CrossRef
7.
go back to reference Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19:1449–1480CrossRef Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19:1449–1480CrossRef
8.
go back to reference Kumar R, Bhowmik S, Kumar K (2017) Establishment and effect of constraint on different mechanical properties of bamboo filler reinforced epoxy composite. Int Polym Process 32(3):308–315CrossRef Kumar R, Bhowmik S, Kumar K (2017) Establishment and effect of constraint on different mechanical properties of bamboo filler reinforced epoxy composite. Int Polym Process 32(3):308–315CrossRef
9.
go back to reference Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43:2883–2892CrossRef Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43:2883–2892CrossRef
10.
go back to reference Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRef Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRef
11.
go back to reference Kushwaha PK, Kumar R (2010) Bamboo fiber reinforced thermosetting resin composites: effect of graft copolymerization of fiber with methacrylamide. J Appl Polym Sci 118:1006–1013 Kushwaha PK, Kumar R (2010) Bamboo fiber reinforced thermosetting resin composites: effect of graft copolymerization of fiber with methacrylamide. J Appl Polym Sci 118:1006–1013
12.
go back to reference Nirmal U, Hashim J, Low KO (2012) Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol Int 47:122–133CrossRef Nirmal U, Hashim J, Low KO (2012) Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol Int 47:122–133CrossRef
13.
go back to reference Yu Y, Huang X (2014) Yu W (2014) a novel process to improve yield and mechanical performance of bamboo fiber reinforced composite via mechanical treatments. Compos Part B 56:48–53CrossRef Yu Y, Huang X (2014) Yu W (2014) a novel process to improve yield and mechanical performance of bamboo fiber reinforced composite via mechanical treatments. Compos Part B 56:48–53CrossRef
14.
go back to reference Khalil AHPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D (2012) Hadi YS (2012) bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368CrossRef Khalil AHPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D (2012) Hadi YS (2012) bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368CrossRef
15.
go back to reference Rajulu AV, Baksh SA, Reddy GR, Chary KN (1998) (1998) chemical resistance and tensile properties of short bamboo fibre reinforced epoxy composites. J Reinf Plast Compos 17:1507–1511CrossRef Rajulu AV, Baksh SA, Reddy GR, Chary KN (1998) (1998) chemical resistance and tensile properties of short bamboo fibre reinforced epoxy composites. J Reinf Plast Compos 17:1507–1511CrossRef
16.
go back to reference Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A 39:1891–1900CrossRef Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A 39:1891–1900CrossRef
17.
go back to reference Zhou XX, Yu Y, Chen LH (2015) Effects of zirconaluminate coupling agent on mechanical properties, rheological behavior and thermal stability of bamboo powder/polypropylene foaming composites. Eur J Wood Prod 73:199–207CrossRef Zhou XX, Yu Y, Chen LH (2015) Effects of zirconaluminate coupling agent on mechanical properties, rheological behavior and thermal stability of bamboo powder/polypropylene foaming composites. Eur J Wood Prod 73:199–207CrossRef
18.
go back to reference Thakur VK, Kessler MR (2014) Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain Chem Eng 2(10):2454–2460CrossRef Thakur VK, Kessler MR (2014) Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain Chem Eng 2(10):2454–2460CrossRef
20.
go back to reference Henke L, Zarrinbakhsh N, Endres HJ, Misra M, Mohanty AK (2017) Biodegradable and bio-based green blends from carbon dioxide-derived bioplastic and poly (butylene succinate). J Polym Environ 25(2):499–509CrossRef Henke L, Zarrinbakhsh N, Endres HJ, Misra M, Mohanty AK (2017) Biodegradable and bio-based green blends from carbon dioxide-derived bioplastic and poly (butylene succinate). J Polym Environ 25(2):499–509CrossRef
21.
go back to reference Nagarajan V, Mohanty AK, Misra M (2016b) Biocomposites with size-fractionated biocarbon: influence of the microstructure on macroscopic properties. ACS Omega 1(4):636–647CrossRef Nagarajan V, Mohanty AK, Misra M (2016b) Biocomposites with size-fractionated biocarbon: influence of the microstructure on macroscopic properties. ACS Omega 1(4):636–647CrossRef
22.
go back to reference Dang W, Kubouchi M, Yamamoto S, Sembokuya H, Tsuda K (2002) An approach to chemical recycling of epoxy resin cured with amine using nitric acid. Polymer 43(10):2953–2958CrossRef Dang W, Kubouchi M, Yamamoto S, Sembokuya H, Tsuda K (2002) An approach to chemical recycling of epoxy resin cured with amine using nitric acid. Polymer 43(10):2953–2958CrossRef
23.
go back to reference Gorrasi G, Sorrentino A (2015) Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem 17(5):2610–2625CrossRef Gorrasi G, Sorrentino A (2015) Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem 17(5):2610–2625CrossRef
24.
go back to reference Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng 286:107–113CrossRef Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng 286:107–113CrossRef
26.
go back to reference Behazin E, Misra M, Mohanty AK (2017) Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites. Compos Part B 118:116–124CrossRef Behazin E, Misra M, Mohanty AK (2017) Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites. Compos Part B 118:116–124CrossRef
27.
go back to reference Kafy A, Kim HC, Zhai L, Kim JW, Kang TJ (2017) Cellulose long fibers fabricated from cellulose nano fibers and its strong and tough characteristics. Sci Rep 7(1):17683PubMedPubMedCentralCrossRef Kafy A, Kim HC, Zhai L, Kim JW, Kang TJ (2017) Cellulose long fibers fabricated from cellulose nano fibers and its strong and tough characteristics. Sci Rep 7(1):17683PubMedPubMedCentralCrossRef
28.
go back to reference Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9PubMedCrossRef Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9PubMedCrossRef
29.
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef
30.
go back to reference Sa Y, Guo Y, Feng X, Wang M, Li P, Gao Y, Yang X, Jiang T (2017) Are different crystallinity-index-calculating methods of hydroxyapatite efficient and consistent? New J Chem 41(13):5723–5731CrossRef Sa Y, Guo Y, Feng X, Wang M, Li P, Gao Y, Yang X, Jiang T (2017) Are different crystallinity-index-calculating methods of hydroxyapatite efficient and consistent? New J Chem 41(13):5723–5731CrossRef
31.
go back to reference Segal LGJMA, Creely JJ, Martin Jr AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef Segal LGJMA, Creely JJ, Martin Jr AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef
32.
go back to reference Abidi N, Cabrales L, Eric H (2010) Thermogravimetric analysis of developing cotton fibers. Thermochim Acta 498:27–32CrossRef Abidi N, Cabrales L, Eric H (2010) Thermogravimetric analysis of developing cotton fibers. Thermochim Acta 498:27–32CrossRef
33.
go back to reference Li Y, Jiang L, Xiong C, Peng W (2015) Effect of different surface treatment for bamboo Fiber on the crystallization behavior and mechanical property of bamboo Fiber/Nanohydroxyapatite/poly (lactic-co-glycolic) composite. Ind Eng Chem Res 54(48):12017–12024CrossRef Li Y, Jiang L, Xiong C, Peng W (2015) Effect of different surface treatment for bamboo Fiber on the crystallization behavior and mechanical property of bamboo Fiber/Nanohydroxyapatite/poly (lactic-co-glycolic) composite. Ind Eng Chem Res 54(48):12017–12024CrossRef
34.
go back to reference Ferreira MVF, Neves ACC, de Oliveira CG, Lopes FPD, Margem FM, Vieira CMF, Monteiro SN (2017) Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers. J Mater Res Technol 6(4):396–400CrossRef Ferreira MVF, Neves ACC, de Oliveira CG, Lopes FPD, Margem FM, Vieira CMF, Monteiro SN (2017) Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers. J Mater Res Technol 6(4):396–400CrossRef
35.
go back to reference Kumar R, Kumar K, Bhowmik S (2018) Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite, wood Sci. Technol 52(3):677–699 Kumar R, Kumar K, Bhowmik S (2018) Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite, wood Sci. Technol 52(3):677–699
36.
go back to reference Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mater Sci Eng A 557:17–28CrossRef Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mater Sci Eng A 557:17–28CrossRef
37.
go back to reference Spanoudakis J, Young RJ (1984) Crack propagation in a glass particle-filled epoxy resin. J Mater Sci 19(2):473–486CrossRef Spanoudakis J, Young RJ (1984) Crack propagation in a glass particle-filled epoxy resin. J Mater Sci 19(2):473–486CrossRef
38.
go back to reference Wong KJ, Yousif BF, Low KO, Ng Y, Tan SL (2010) Effects of fillers on the fracture behaviour of particulate polyester composites. J Strain Anal Eng Des 45(1):67–78CrossRef Wong KJ, Yousif BF, Low KO, Ng Y, Tan SL (2010) Effects of fillers on the fracture behaviour of particulate polyester composites. J Strain Anal Eng Des 45(1):67–78CrossRef
39.
go back to reference Goyat MS, Suresh S, Bahl S, Halder S, Ghosh PK (2015) Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Mater Chem Phys 166:144–152CrossRef Goyat MS, Suresh S, Bahl S, Halder S, Ghosh PK (2015) Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Mater Chem Phys 166:144–152CrossRef
40.
go back to reference Singleton ACN, Baillie CA, Beaumont PWR, Peijs T (2003) On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Compos Part B 34(6):519–526CrossRef Singleton ACN, Baillie CA, Beaumont PWR, Peijs T (2003) On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Compos Part B 34(6):519–526CrossRef
41.
go back to reference Li Y, Zhou Q, Zhang S, Huang P, Xu K, Wang F, Lu T (2018) On the role of weak interface in crack blunting process in nanoscale layered composites. Appl Surf Sci 433:957–962CrossRef Li Y, Zhou Q, Zhang S, Huang P, Xu K, Wang F, Lu T (2018) On the role of weak interface in crack blunting process in nanoscale layered composites. Appl Surf Sci 433:957–962CrossRef
42.
go back to reference Kitey R, Phan AV, Tippur HV, Kaplan T (2006) Modeling of crack growth through particulate clusters in brittle matrix by symmetric-Galerkin boundary element method. Int J Fract 141(1–2):11–25CrossRef Kitey R, Phan AV, Tippur HV, Kaplan T (2006) Modeling of crack growth through particulate clusters in brittle matrix by symmetric-Galerkin boundary element method. Int J Fract 141(1–2):11–25CrossRef
43.
go back to reference Khan Z, Yousif BF, Islam M (2017) Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos Part B 116:186–199CrossRef Khan Z, Yousif BF, Islam M (2017) Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos Part B 116:186–199CrossRef
44.
go back to reference James MN, Christopher CJ, Lu Y, Patterson EA (2012) Fatigue crack growth and craze-induced crack tip shielding in polycarbonate. Polymer 53(7):1558–1570CrossRef James MN, Christopher CJ, Lu Y, Patterson EA (2012) Fatigue crack growth and craze-induced crack tip shielding in polycarbonate. Polymer 53(7):1558–1570CrossRef
45.
go back to reference Gope PC, Rao DK (2016) Fracture behaviour of epoxy biocomposite reinforced with short coconut fibres (Cocos nucifera) and walnut particles (Juglansregia L.). J Thermoplast Compos Mater 29(8):1098–1117CrossRef Gope PC, Rao DK (2016) Fracture behaviour of epoxy biocomposite reinforced with short coconut fibres (Cocos nucifera) and walnut particles (Juglansregia L.). J Thermoplast Compos Mater 29(8):1098–1117CrossRef
Metadata
Title
Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism
Authors
Rahul Kumar
Kaushik Kumar
Sumit Bhowmik
Gautam Sarkhel
Publication date
01-02-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1720-x

Other articles of this Issue 2/2019

Journal of Polymer Research 2/2019 Go to the issue

Premium Partners