Skip to main content
Top
Published in: Measurement Techniques 5/2023

11-09-2023 | THERMOPHYSICAL MEASUREMENTS

Technique of Expanding the Thermal-Indication Capabilities of Standard Thermal Paper for Studying the Field Distribution in a Microwave Chamber

Authors: E. V. Matveev, V. V. Berestov

Published in: Measurement Techniques | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study reviews the methods of studying a microwave field power density distribution inside microwave heat treatment units and identifies shortcomings of these methods. It proposes a technique of extending the thermal-indication capabilities of standard thermal paper, according to which we provide an example of a study of temperature distribution when a three-layer thermal indicator assembly is heated in a microwave beam-type chamber of approximately 600 W. Temperature variations in the range of 25–400°C with the optical density of standard thermal paper have been experimentally studied by means of reflectance densitometry. Based on the analysis of the temperature dependence on the change in optical reflection density, six regions of the standard thermal paper conversion were identified, namely temperature ranges of 25–70°C, 70–100°C, 100–150°C, 150–210°C, 210–290°C, 290–400°C and optical densities of 0.06–0.07, 0.08–0.90, 0.91–0.99, 0.71–0.91, 0.21–0.70, and 0.20–0.38 B, respectively. In region 1, the optical density of the thermal paper does not change relative to the initial surface, and in region 2, an initial increase in the optical density is observed. In regions 3 and 4, the maximum optical density is achieved due to darkening of a leuco dye, while in region 3, there is a smooth surface of the thermal paper; in region 4, there is a velvety surface of the thermal paper due to formation of microcrystals and clots of the thermosensitive layer material. In region 5, a sharp decrease in optical density is observed as a result of discoloration of a leuco dye, and in region 6, a secondary increase in optical density is observed due to carbonization of the paper backing. The results obtained can be used to design microwave equipment as well as optimize microwave treatment conditions for materials and articles for the food, chemical, electronic, and other industries. The developed technique is also relevant for local measurements of inhomogeneity in the distribution of temperature fields when other thermometry methods cannot be used.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
GOST R 58079-2018. Thermosensitive Paper for Printing Devices. General Technical Requirements.
 
2
GOST 8.654-2016. State System for Ensuring Uniform Measurement. Photometry. Terms and Definitions.
 
3
Technical Data for Thermal Sensitive Paper HEAT LOMOND [website]. URL: https://​www.​termoroll.​shop/​files/​_​na_​termobumagu_​ot_​19.​09.​2019.​pdf (Reference date: 24.04.2023.
 
4
GOST 13523-78. Semi-Finished Fibrous Products, Paper, and Cardboard. Sample Conditioning Method.
 
5
ISO 5-4:2009. Photography and Graphic Technology — Density Measurements, part 4: Geometric Conditions for Reflection Density.
 
6
ASTM F 2036-05:2007. Standard Test Method for Evaluation of Larger Area Density and Background on Electrophotographic Printers.
 
7
GOST R ISO 12647-1-2017. Printing Technology. Control over the Process of Making Digital Files, Raster Color Separations, Proof and Production Prints. Part 1. Measurement Parameters and Methods.
 
8
GOST ISO 287-2014. Paper and Cardboard. Determination of Product Moisture Content in a Batch. Drying Method in a Drying Cabinet.
 
Literature
2.
go back to reference M. Regier, K. Knoerzer, and H. Schubert (ed.), The Microwave Processing of Foods, Woodhead Publ. (2016). M. Regier, K. Knoerzer, and H. Schubert (ed.), The Microwave Processing of Foods, Woodhead Publ. (2016).
3.
go back to reference A. K. Datta and R. C. Anantheswaran, Handbook of Microwave Technology for Food Application, CRC Press (2001). A. K. Datta and R. C. Anantheswaran, Handbook of Microwave Technology for Food Application, CRC Press (2001).
6.
go back to reference M. Mehdizadeh, Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation: a Design Guide, William Andrew, Elsevier, Oxford (2010). M. Mehdizadeh, Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation: a Design Guide, William Andrew, Elsevier, Oxford (2010).
7.
go back to reference V. V. Komarov, Investigation of the Processes of Microwave Heating of Liquid Polymers in a Multimode Resonator Chamber, Prikladn. Fiz., No. 4, 133–136 (2009). V. V. Komarov, Investigation of the Processes of Microwave Heating of Liquid Polymers in a Multimode Resonator Chamber, Prikladn. Fiz., No. 4, 133–136 (2009).
16.
go back to reference S. Lupi, Fundamentals of Electroheat: Electric. Technol. Proc Heating, Springer International Publishing Switzerland, 620 (2017). S. Lupi, Fundamentals of Electroheat: Electric. Technol. Proc Heating, Springer International Publishing Switzerland, 620 (2017).
21.
go back to reference J. G. Webster and H. Eren, Measurement, Instrumentation, and Sensors Handbook: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement (2nd ed.), CRC Press (2014). J. G. Webster and H. Eren, Measurement, Instrumentation, and Sensors Handbook: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement (2nd ed.), CRC Press (2014).
22.
go back to reference E. Allen and S. Triantaphillidou, The Manual of Photography (10th ed.), CRC Press (2012). E. Allen and S. Triantaphillidou, The Manual of Photography (10th ed.), CRC Press (2012).
23.
go back to reference H. Kipphan (Hrsg.), Handbuch der Printmedien. Technologien und Produktionsverfahren, Springer-Verlag (2013). H. Kipphan (Hrsg.), Handbuch der Printmedien. Technologien und Produktionsverfahren, Springer-Verlag (2013).
Metadata
Title
Technique of Expanding the Thermal-Indication Capabilities of Standard Thermal Paper for Studying the Field Distribution in a Microwave Chamber
Authors
E. V. Matveev
V. V. Berestov
Publication date
11-09-2023
Publisher
Springer US
Published in
Measurement Techniques / Issue 5/2023
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-023-02231-8

Other articles of this Issue 5/2023

Measurement Techniques 5/2023 Go to the issue