Skip to main content
Top
Published in: Quantum Information Processing 1/2020

01-01-2020

Teleportation-based quantum homomorphic encryption scheme with quasi-compactness and perfect security

Author: Min Liang

Published in: Quantum Information Processing | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum homomorphic encryption (QHE) is an important cryptographic technology for delegated quantum computation. It enables remote server to perform quantum computation on encrypted data, and the specific algorithm performed by Server is unnecessarily known by Client. Quantum fully homomorphic encryption (QFHE) is a QHE that satisfies both compactness and \({\mathcal {F}}\)-homomorphism (homomorphic for any quantum circuits). However, Yu et al. (Phys Rev A 90:050303, 2014) proved a negative result: Assume interaction is not allowed, it is impossible to construct perfectly secure QFHE scheme. So this article focuses on non-interactive and perfectly secure QHE scheme with loose requirement, e.g., quasi-compactness. This article defines encrypted gate, which is denoted by \(EG[U]:|\alpha \rangle \rightarrow \left( (a,b),Enc_{a,b}(U|\alpha \rangle )\right) \). We present a gate-teleportation-based two-party computation scheme for EG[U], where one party gives arbitrary quantum state \(|\alpha \rangle \) as input and obtains the encrypted U-computing result \(Enc_{a,b}(U|\alpha \rangle )\), and the other party obtains the random bits ab. Based on \(EG[P^x](x\in \{0,1\})\), we propose a method to remove the P-error generated in the homomorphic evaluation of \(T/T^\dagger \)-gate. Using this method, we design two non-interactive and perfectly secure QHE schemes named GT and VGT. Both of them are \({\mathcal {F}}\)-homomorphic and quasi-compact (the decryption complexity depends on the \(T/T^\dagger \)-gate complexity). Assume \({\mathcal {F}}\)-homomorphism, non-interaction and perfect security are necessary properties, the quasi-compactness is proved to be bounded by \(\varOmega (M)\), where M is the total number of \(T/T^\dagger \)-gates in the evaluated circuit. We prove VGT is M-quasi-compact and reaches the optimal bound. According to our QHE schemes, the decryption would be inefficient when the evaluated circuit contains exponential number of \(T/T^\dagger \)-gates. Thus, our schemes are suitable for homomorphic evaluation of any quantum circuit with low \(T/T^\dagger \)-gate complexity, such as any polynomial-size quantum circuit or any quantum circuit with polynomial number of \(T/T^\dagger \)-gates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
A QHE scheme which is compact and not \({\mathcal {F}}\)-homomorphic is called quantum somewhat homomorphic encryption scheme. This kind of QHE scheme is not studied in this article. In fact, it is also worth to study somewhat QHE scheme which is homomorphic for a sufficiently large class of quantum circuits.
 
2
In the concrete scheme, in order to protect x from Server’s eavesdropping, Client should perform quantum operator \(X^rZ^{r'}P^x\), where both r and \(r'\) are secret random bits chosen by Client.
 
Literature
1.
go back to reference Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009) Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)
2.
3.
go back to reference Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. In: Proceedings of Innovations in Computer Science, ICS 2010, pp. 453–469. Tsinghua University Press (2010) Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. In: Proceedings of Innovations in Computer Science, ICS 2010, pp. 453–469. Tsinghua University Press (2010)
4.
go back to reference Broadbent, A.J., Fitzsimons, F., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science, pp. 517–526. IEEE (2009) Broadbent, A.J., Fitzsimons, F., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science, pp. 517–526. IEEE (2009)
5.
go back to reference Sueki, T., Koshiba, T., Morimae, T.: Ancilla-driven universal blind quantum computation. Phys. Rev. A 87, 060301 (2013)ADSCrossRef Sueki, T., Koshiba, T., Morimae, T.: Ancilla-driven universal blind quantum computation. Phys. Rev. A 87, 060301 (2013)ADSCrossRef
6.
go back to reference Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)ADSCrossRef Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)ADSCrossRef
7.
go back to reference Morimae, T.: Continuous-variable blind quantum computation. Phys. Rev. Lett. 109, 230502 (2012)ADSCrossRef Morimae, T.: Continuous-variable blind quantum computation. Phys. Rev. Lett. 109, 230502 (2012)ADSCrossRef
8.
go back to reference Giovannetti, V., Lloyd, S., Maccone, L.: Efficient universal blind quantum computing. Phys. Rev. Lett. 111(23), 230501 (2013)ADSCrossRef Giovannetti, V., Lloyd, S., Maccone, L.: Efficient universal blind quantum computing. Phys. Rev. Lett. 111(23), 230501 (2013)ADSCrossRef
9.
go back to reference Liang, M.: Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf. Process. 14, 2749–2759 (2015)ADSMathSciNetCrossRef Liang, M.: Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf. Process. 14, 2749–2759 (2015)ADSMathSciNetCrossRef
10.
go back to reference Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)ADSCrossRef Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)ADSCrossRef
11.
12.
go back to reference Tan, S.H., Kettlewell, J.A., Ouyang, Y.K., Chen, L., Fitzsimons, J.F.: A quantum approach to fully homomorphic encryption. Sci. Rep. 6, 33467 (2016)ADSCrossRef Tan, S.H., Kettlewell, J.A., Ouyang, Y.K., Chen, L., Fitzsimons, J.F.: A quantum approach to fully homomorphic encryption. Sci. Rep. 6, 33467 (2016)ADSCrossRef
13.
go back to reference Yu, L., Perez-Delgado, C.A., Fitzsimons, J.F.: Limitations on information theoretically secure quantum homomorphic encryption. Phys. Rev. A 90, 050303 (2014)ADSCrossRef Yu, L., Perez-Delgado, C.A., Fitzsimons, J.F.: Limitations on information theoretically secure quantum homomorphic encryption. Phys. Rev. A 90, 050303 (2014)ADSCrossRef
14.
go back to reference Fisher, K., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)ADSCrossRef Fisher, K., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)ADSCrossRef
15.
go back to reference Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015 Part II. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg (2015) Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015 Part II. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg (2015)
16.
go back to reference Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016 Part III. LNCS, vol. 9816, pp. 3–32. Springer, Heidelberg (2016) Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016 Part III. LNCS, vol. 9816, pp. 3–32. Springer, Heidelberg (2016)
17.
19.
go back to reference Newman, M., Shi, Y.: Limitationson transversal computation through quantum homomorphic encryption. Quantum Inf. Comput. 18, 927–948 (2018)MathSciNet Newman, M., Shi, Y.: Limitationson transversal computation through quantum homomorphic encryption. Quantum Inf. Comput. 18, 927–948 (2018)MathSciNet
20.
go back to reference Lai, C.-Y., Chung, K.-M.: On statistically-secure quantum homomorphic encryption. Quantum Inf. Comput. 18, 785–794 (2018)MathSciNet Lai, C.-Y., Chung, K.-M.: On statistically-secure quantum homomorphic encryption. Quantum Inf. Comput. 18, 785–794 (2018)MathSciNet
21.
go back to reference Alagic, G., Dulek, Y., Schaffner, C., Speelman, F.: Quantum fully homomorphic encryption with verification. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017 Part I. LNCS, vol. 10624, pp. 438–467. Springer, Cham (2017) Alagic, G., Dulek, Y., Schaffner, C., Speelman, F.: Quantum fully homomorphic encryption with verification. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017 Part I. LNCS, vol. 10624, pp. 438–467. Springer, Cham (2017)
22.
go back to reference Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
23.
go back to reference Boykin, P., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 42317 (2003)ADSCrossRef Boykin, P., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 42317 (2003)ADSCrossRef
24.
go back to reference Ambainis, A., Mosca, M., Tapp, A., De Wolf, R.: Private quantum channels. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 547–553. Redondo Beach, CA, USA (2000) Ambainis, A., Mosca, M., Tapp, A., De Wolf, R.: Private quantum channels. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 547–553. Redondo Beach, CA, USA (2000)
25.
go back to reference Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational primitive. Nature 402, 390–393 (1999)ADSCrossRef Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational primitive. Nature 402, 390–393 (1999)ADSCrossRef
27.
go back to reference Shor, P. W.: Algorithms for quantum computation: discrete logarithm and factoring. In: Proceedings of the 35th Annual Symposium on the Theory of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994) Shor, P. W.: Algorithms for quantum computation: discrete logarithm and factoring. In: Proceedings of the 35th Annual Symposium on the Theory of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)
28.
go back to reference Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for solving linear systems of equations. Phys. Rev. Lett. 15(103), 150502 (2009)CrossRef Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for solving linear systems of equations. Phys. Rev. Lett. 15(103), 150502 (2009)CrossRef
Metadata
Title
Teleportation-based quantum homomorphic encryption scheme with quasi-compactness and perfect security
Author
Min Liang
Publication date
01-01-2020
Publisher
Springer US
Published in
Quantum Information Processing / Issue 1/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2529-6

Other articles of this Issue 1/2020

Quantum Information Processing 1/2020 Go to the issue