Skip to main content
Top
Published in: Quantum Information Processing 1/2020

01-01-2020

Implementation of quantum secret sharing and quantum binary voting protocol in the IBM quantum computer

Authors: Dintomon Joy, M. Sabir, Bikash K. Behera, Prasanta K. Panigrahi

Published in: Quantum Information Processing | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum secret sharing is a way to share secret messages among the clients in a group with complete security. For the first time, Hillery et al. (Phys Rev A 59:1829, 1999) proposed the quantum version of classical secret sharing protocol using GHZ states. Here, we implement the above quantum secret sharing protocol in ‘IBM Q 5 Tenerife’ quantum processor and compare the experimentally obtained results with the theoretically predicted ones. Further, a new quantum binary voting protocol is proposed and implemented in the 14-qubit ‘IBM Q 14 Melbourne’ quantum processor. The results are analyzed through the technique of quantum state tomography, and the fidelity of states is calculated for different number of executions made in the device.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on Managing Requirements Knowledge, pp. 313–317. IEEE Computer Society, New York (1979) Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on Managing Requirements Knowledge, pp. 313–317. IEEE Computer Society, New York (1979)
4.
5.
go back to reference Schneier, B.: Applied Cryptography, p. 70. Wiley, New York (1996)MATH Schneier, B.: Applied Cryptography, p. 70. Wiley, New York (1996)MATH
6.
go back to reference Gruska, J.: Foundations of Computing, p. 504. Thomson Computer Press, London (1997) Gruska, J.: Foundations of Computing, p. 504. Thomson Computer Press, London (1997)
7.
go back to reference Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. Santa Fe, New Mexico (1994) Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. Santa Fe, New Mexico (1994)
8.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium Theory of Computing, pp. 212–219. ACM Press, New York (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium Theory of Computing, pp. 212–219. ACM Press, New York (1996)
9.
go back to reference Gangopadhyay, S., Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)ADSMathSciNetMATH Gangopadhyay, S., Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)ADSMathSciNetMATH
10.
go back to reference Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADS Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADS
12.
go back to reference Wiesner, S.: Conjugate coding. ACM SIGACT News 15, 78 (1983) MATH Wiesner, S.: Conjugate coding. ACM SIGACT News 15, 78 (1983) MATH
13.
go back to reference Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J.: Three-party qutrit-state sharing. Eur. Phys. J. D 41, 371 (2007)ADSMathSciNet Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J.: Three-party qutrit-state sharing. Eur. Phys. J. D 41, 371 (2007)ADSMathSciNet
14.
go back to reference Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADS Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADS
15.
go back to reference Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Inf. Process. 16, 202 (2017)ADSMathSciNetMATH Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Inf. Process. 16, 202 (2017)ADSMathSciNetMATH
16.
go back to reference Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADS Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADS
17.
go back to reference Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303 (2012)ADS Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303 (2012)ADS
18.
go back to reference Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: On weak odd domination and graph-based quantum secret sharing. Theor. Comput. Sci. 598, 129 (2015)MathSciNetMATH Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: On weak odd domination and graph-based quantum secret sharing. Theor. Comput. Sci. 598, 129 (2015)MathSciNetMATH
19.
go back to reference Diep, D.N., Giang, D.H., Phu, P.H.: Application of quantum Gauss–Jordan elimination code to quantum secret sharing code. Int. J. Theor. Phys. 57, 841 (2018)MathSciNetMATH Diep, D.N., Giang, D.H., Phu, P.H.: Application of quantum Gauss–Jordan elimination code to quantum secret sharing code. Int. J. Theor. Phys. 57, 841 (2018)MathSciNetMATH
20.
go back to reference Gao, G., Wang, Y., Wang, D., Ye, L.: Comment on ’Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93, 027002 (2018)ADS Gao, G., Wang, Y., Wang, D., Ye, L.: Comment on ’Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93, 027002 (2018)ADS
21.
go back to reference Abulkasim, H., Hamad, S., Elhadad, A.: Reply to Comment on ’Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93, 027001 (2018)ADS Abulkasim, H., Hamad, S., Elhadad, A.: Reply to Comment on ’Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93, 027001 (2018)ADS
22.
go back to reference Liu, F., Qin, S.J., Wen, Q.Y.: A quantum secret-sharing protocol with fairness. Phys. Scr. 89, 075104 (2014)ADS Liu, F., Qin, S.J., Wen, Q.Y.: A quantum secret-sharing protocol with fairness. Phys. Scr. 89, 075104 (2014)ADS
23.
go back to reference Lai, H., Xiao, J., Orgun, M.A., Xue, L., Pieprzyk, J.: Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf. Process. 13, 895 (2014)ADSMATH Lai, H., Xiao, J., Orgun, M.A., Xue, L., Pieprzyk, J.: Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf. Process. 13, 895 (2014)ADSMATH
24.
go back to reference Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819 (2015)MathSciNetMATH Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819 (2015)MathSciNetMATH
25.
go back to reference Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46, 045304 (2013)ADSMathSciNetMATH Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46, 045304 (2013)ADSMathSciNetMATH
26.
go back to reference Tsai, C., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460 (2012)ADS Tsai, C., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460 (2012)ADS
27.
go back to reference Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)ADS Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)ADS
28.
go back to reference Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907 (2014)ADSMATH Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907 (2014)ADSMATH
29.
go back to reference Gao, G.: Improvement of efficient multiparty quantum secret sharing based on bell states and continuous variable operations. Int. J. Theor. Phys. 53, 2231 (2014) Gao, G.: Improvement of efficient multiparty quantum secret sharing based on bell states and continuous variable operations. Int. J. Theor. Phys. 53, 2231 (2014)
30.
go back to reference Zhang, L., Guo, Y., Huang, D.: High-efficient quantum secret sharing with arrangements of lines on two-dimensional planes. Int. J. Internet Protoc. Technol. 8, 116 (2014) Zhang, L., Guo, Y., Huang, D.: High-efficient quantum secret sharing with arrangements of lines on two-dimensional planes. Int. J. Internet Protoc. Technol. 8, 116 (2014)
31.
go back to reference Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)ADSMathSciNet Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)ADSMathSciNet
32.
go back to reference Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828 (2012)ADS Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828 (2012)ADS
34.
go back to reference Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71, 022321 (2005)ADS Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71, 022321 (2005)ADS
35.
go back to reference Yan, F., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)ADS Yan, F., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)ADS
36.
go back to reference Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)ADS Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)ADS
38.
go back to reference Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365 (2013)ADSMathSciNetMATH Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365 (2013)ADSMathSciNetMATH
39.
go back to reference Wang, H., Huang, Y., Fang, X., Gu, B., Fu, D.: High-capacity three-party quantum secret sharing with single photons in both the polarization and the spatial-mode degrees of freedom. Int. J. Theor. Phys. 52, 1043 (2013)MathSciNetMATH Wang, H., Huang, Y., Fang, X., Gu, B., Fu, D.: High-capacity three-party quantum secret sharing with single photons in both the polarization and the spatial-mode degrees of freedom. Int. J. Theor. Phys. 52, 1043 (2013)MathSciNetMATH
40.
go back to reference Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130 (2008)ADS Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130 (2008)ADS
41.
go back to reference Hao, S.B., Yu, B.: Multiparty quantum secret information sharing in enterprise management based on single qubit with random rotation angle. Int. J. Theor. Phys. 51, 1674 (2012)MathSciNetMATH Hao, S.B., Yu, B.: Multiparty quantum secret information sharing in enterprise management based on single qubit with random rotation angle. Int. J. Theor. Phys. 51, 1674 (2012)MathSciNetMATH
42.
go back to reference Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADS Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADS
43.
go back to reference Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)ADS Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)ADS
44.
go back to reference Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A: Math. Theor. 42, 115303 (2009)ADSMathSciNetMATH Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A: Math. Theor. 42, 115303 (2009)ADSMathSciNetMATH
45.
go back to reference Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961 (2010)ADS Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961 (2010)ADS
46.
go back to reference Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49, 2592 (2010)MathSciNetMATH Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49, 2592 (2010)MathSciNetMATH
47.
go back to reference Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10, 297 (2011)MathSciNetMATH Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10, 297 (2011)MathSciNetMATH
48.
go back to reference Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457 (2011)ADS Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457 (2011)ADS
49.
go back to reference Muralidharan, S., Karumanchi, S., Narayanaswamy, S., Srikanth, R., Panigrahi, P.K.: In How Many Ways Can Quantum Information Be Split? arXiv:0907.3532 Muralidharan, S., Karumanchi, S., Narayanaswamy, S., Srikanth, R., Panigrahi, P.K.: In How Many Ways Can Quantum Information Be Split? arXiv:​0907.​3532
50.
go back to reference Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2011)ADS Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2011)ADS
51.
go back to reference Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)ADS Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)ADS
52.
go back to reference Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)ADS Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)ADS
53.
go back to reference Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21, 16663 (2013)ADS Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21, 16663 (2013)ADS
55.
go back to reference Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018) Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018)
56.
go back to reference Connover, E.: Google moves toward quantum supremacy with 72-qubit computer. Sci. News 193, 6 (2018) Connover, E.: Google moves toward quantum supremacy with 72-qubit computer. Sci. News 193, 6 (2018)
63.
go back to reference Boyda, E., Basu, S., Ganguly, S., Michaelis, A., Mukhopadhyay, S., Nemani, R.R.: Deploying a quantum annealing processor to detect tree cover in aerial imagery of California. PLoS ONE 12(2), e0172505 (2017) Boyda, E., Basu, S., Ganguly, S., Michaelis, A., Mukhopadhyay, S., Nemani, R.R.: Deploying a quantum annealing processor to detect tree cover in aerial imagery of California. PLoS ONE 12(2), e0172505 (2017)
64.
go back to reference O’Malley, D., Vesselinov, V.V., Alexandrov, B.S., Alexandrov, L.B.: Nonnegative/binary matrix factorization with a D-Wave quantum annealer. PLoS ONE 13(12), e0206653 (2018) O’Malley, D., Vesselinov, V.V., Alexandrov, B.S., Alexandrov, L.B.: Nonnegative/binary matrix factorization with a D-Wave quantum annealer. PLoS ONE 13(12), e0206653 (2018)
65.
go back to reference Srivastava, R., Choi, I., Cook, T.: The Commercial Prospects of Quantum Computing. Technical report, Networked Quantum Information Technologies (2016) Srivastava, R., Choi, I., Cook, T.: The Commercial Prospects of Quantum Computing. Technical report, Networked Quantum Information Technologies (2016)
67.
go back to reference Cusumano, M.A.: The business of quantum computing. Commun. ACM 61(10), 20–22 (2018) Cusumano, M.A.: The business of quantum computing. Commun. ACM 61(10), 20–22 (2018)
69.
go back to reference Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)ADSMathSciNet Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)ADSMathSciNet
70.
go back to reference Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)ADS Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)ADS
71.
go back to reference Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)ADS Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)ADS
72.
go back to reference Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 032329 (2016)ADS Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 032329 (2016)ADS
73.
go back to reference Takita, M., Corcoles, A.D., Magesan, E., Abdo, B., Brink, M., Cross, A., Chow, J.M., Gambetta, J.M.: Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett. 117, 210505 (2016)ADS Takita, M., Corcoles, A.D., Magesan, E., Abdo, B., Brink, M., Cross, A., Chow, J.M., Gambetta, J.M.: Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett. 117, 210505 (2016)ADS
74.
go back to reference Wootton, J.R., Loss, D.: Repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018)ADS Wootton, J.R., Loss, D.: Repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018)ADS
75.
go back to reference Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)ADSMathSciNetMATH Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)ADSMathSciNetMATH
76.
go back to reference Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)ADSMathSciNetMATH Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)ADSMathSciNetMATH
77.
go back to reference Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860 (2017)ADS Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860 (2017)ADS
79.
go back to reference Huang, H.L., Zhao, Y.W., Li, T., Li, F.G., Du, Y.T., Fu, X.Q., Zhang, S., Wang, X., Bao, W.S.: Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys. 12, 120305 (2017) Huang, H.L., Zhao, Y.W., Li, T., Li, F.G., Du, Y.T., Fu, X.Q., Zhang, S., Wang, X., Bao, W.S.: Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys. 12, 120305 (2017)
80.
go back to reference Wooton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)ADS Wooton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)ADS
81.
go back to reference Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4, 1 (2017)ADS Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4, 1 (2017)ADS
82.
go back to reference Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2017) Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2017)
83.
go back to reference Hebenstreit, M., Alsina, D., Latorre, J.I., Kraus, B.: Compressed quantum computation using a remote five-qubit quantum computer. Phys. Rev. A 95, 052339 (2017)ADS Hebenstreit, M., Alsina, D., Latorre, J.I., Kraus, B.: Compressed quantum computation using a remote five-qubit quantum computer. Phys. Rev. A 95, 052339 (2017)ADS
84.
go back to reference Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. 114, 3305 (2017) Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. 114, 3305 (2017)
85.
go back to reference Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349, 75–81 (2006)ADSMATH Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349, 75–81 (2006)ADSMATH
86.
go back to reference Sharma, R.D., De, A.: Quantum voting using single qubits. Indian J. Sci. Technol. 9(42), 032329 (2016) Sharma, R.D., De, A.: Quantum voting using single qubits. Indian J. Sci. Technol. 9(42), 032329 (2016)
87.
go back to reference Ghose, S., Kumar, A., Madhok, V., Hamel, A.M.: Multiparty quantum communication using multiqubit entanglement and teleportation. Phys. Res. Int. 2014, 948750 (2014) Ghose, S., Kumar, A., Madhok, V., Hamel, A.M.: Multiparty quantum communication using multiqubit entanglement and teleportation. Phys. Res. Int. 2014, 948750 (2014)
88.
go back to reference Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55, 2303 (2016)MathSciNetMATH Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55, 2303 (2016)MathSciNetMATH
89.
go back to reference Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15(1), 1750007 (2017)MATH Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15(1), 1750007 (2017)MATH
90.
go back to reference Lou, X.: Quantum distributed ballot scheme based on entanglement swapping. In: 10th International Conference on Trust. Security and Privacy in Computing and Communications, IEEE (2011) Lou, X.: Quantum distributed ballot scheme based on entanglement swapping. In: 10th International Conference on Trust. Security and Privacy in Computing and Communications, IEEE (2011)
91.
go back to reference Cao, H.J., Ding, L.Y., Jiang, X.L., Li, P.F.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57, 674 (2017)MathSciNetMATH Cao, H.J., Ding, L.Y., Jiang, X.L., Li, P.F.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57, 674 (2017)MathSciNetMATH
92.
go back to reference Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40, 13407 (2007)ADSMathSciNetMATH Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40, 13407 (2007)ADSMathSciNetMATH
93.
go back to reference Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. Int. J. Theor. Phys. 56, 3019 (2018)MATH Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. Int. J. Theor. Phys. 56, 3019 (2018)MATH
94.
go back to reference Xue, P., Zhang, X.: A simple quantum voting scheme with multi-qubit entanglement. Sci. Rep. 7, 7586 (2017)ADS Xue, P., Zhang, X.: A simple quantum voting scheme with multi-qubit entanglement. Sci. Rep. 7, 7586 (2017)ADS
95.
go back to reference Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNet Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNet
96.
go back to reference Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetMATH Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetMATH
97.
go back to reference Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSMATH Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSMATH
98.
go back to reference Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information-Volume I: Basic Concepts, p. 118. World scientific, Singapore (2004)MATH Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information-Volume I: Basic Concepts, p. 118. World scientific, Singapore (2004)MATH
99.
go back to reference Pathak, A.: Experimental Quantum Mechanics in the Class Room: Testing Basic Ideas of Quantum Mechanics and Quantum Computing Using IBM Quantum Computer (2018). arXiv:1805.06275v1 Pathak, A.: Experimental Quantum Mechanics in the Class Room: Testing Basic Ideas of Quantum Mechanics and Quantum Computing Using IBM Quantum Computer (2018). arXiv:​1805.​06275v1
100.
go back to reference Altepeter, J.B., James, D.F.V., Kwiat, P.G.: Quantum state tomography. In: Paris, M., Rehácek, J. (eds.) Quantum State Estimation. Lecture Notes in Physics, vol. 649. Springer, Berlin (2004) Altepeter, J.B., James, D.F.V., Kwiat, P.G.: Quantum state tomography. In: Paris, M., Rehácek, J. (eds.) Quantum State Estimation. Lecture Notes in Physics, vol. 649. Springer, Berlin (2004)
101.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 409. Cambridge University Press, Cambridge (2010) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 409. Cambridge University Press, Cambridge (2010)
102.
go back to reference Zhang, J.L., Zhan, J.Z., Xie, S.C.: A choreographed distributed electronic voting scheme. Int. J. Theor. Phys. 57, 2676 (2018)MathSciNetMATH Zhang, J.L., Zhan, J.Z., Xie, S.C.: A choreographed distributed electronic voting scheme. Int. J. Theor. Phys. 57, 2676 (2018)MathSciNetMATH
103.
go back to reference Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 012333 (2007)ADS Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 012333 (2007)ADS
104.
go back to reference Sun, X., Wang, Q., Kulicki, P.: A simple voting protocol on quantum blockchain. Int. J. Theor. Phys. 58, 275 (2018)MATH Sun, X., Wang, Q., Kulicki, P.: A simple voting protocol on quantum blockchain. Int. J. Theor. Phys. 58, 275 (2018)MATH
105.
go back to reference Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254, 380 (2005)ADS Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254, 380 (2005)ADS
106.
go back to reference Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)ADS Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)ADS
107.
go back to reference Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)ADS Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)ADS
Metadata
Title
Implementation of quantum secret sharing and quantum binary voting protocol in the IBM quantum computer
Authors
Dintomon Joy
M. Sabir
Bikash K. Behera
Prasanta K. Panigrahi
Publication date
01-01-2020
Publisher
Springer US
Published in
Quantum Information Processing / Issue 1/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2531-z

Other articles of this Issue 1/2020

Quantum Information Processing 1/2020 Go to the issue