Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2020

21-04-2020

Temperature and frequency effects on electrical and dielectric properties of n-4H SiC based metal–insulator-semiconductor (MIS) diode interlayered with Si3N4 thin film

Authors: H. H. Gullu, D. E. Yildiz

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Effects of frequency and temperature variations on the electrical properties of Au/Si3N4/n-4H SiC diode were investigated. The diode responses to the change in frequency with applied AC signal of varying frequencies and to the change in temperature controlled by cryogenic control system were discussed with considering possible deviation from ideality and effects of interface states at the junction. Depending on its capacitive and conductive characteristics, internal parasitic resistances were associated with the observed dielectric behaviors of the diode. With the use of Si3N4 layer, the values of complex dielectric constant were extracted and this parameter was found to be in a strong dependence of interface changes in low frequency region whereas this variation was very low at higher frequencies. In addition, there is a slight decrease in the dielectric constant with increasing temperature whereas the values of dielectric loss give a remarkable response to the temperature at forward bias region. Depending on these profiles, AC conductivity values were found in decreasing behavior with both frequency and temperature. From the temperature dependent behaviors, activation energies were calculated from the corresponding Arrhenius plots. Together with the series resistance of the diode and density of interface states, interface polarization was found in a dominant role in both complex dielectric and electric modulus characteristics of the diode.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts (Cleredon, Oxford, 1988) E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts (Cleredon, Oxford, 1988)
2.
go back to reference S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2007) S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2007)
3.
go back to reference S.S. Li, Semiconductor Physical Electronics (Springer, New York, 2006) S.S. Li, Semiconductor Physical Electronics (Springer, New York, 2006)
4.
go back to reference S. Nayak, S. Acharya, M. Baral, M. Garbrecht, T. Ganguli, S.M. Shivaprasad, B. Saha, Appl. Phys. Lett. 115, 251901 (2019) S. Nayak, S. Acharya, M. Baral, M. Garbrecht, T. Ganguli, S.M. Shivaprasad, B. Saha, Appl. Phys. Lett. 115, 251901 (2019)
5.
go back to reference S. Choi, Y.J. Kim, J. Jeon, B.H. Lee, J.H. Cho, S. Lee, ACS Appl. Mater. Interfaces 11, 47190–47196 (2019) S. Choi, Y.J. Kim, J. Jeon, B.H. Lee, J.H. Cho, S. Lee, ACS Appl. Mater. Interfaces 11, 47190–47196 (2019)
6.
go back to reference E. Monteblanco, F. Donatini, M. Hehn, D. Lacour, Y. Lassailly, J. Peretti, N. Rougemaille, Phys. Rev. B 100, 205301 (2019) E. Monteblanco, F. Donatini, M. Hehn, D. Lacour, Y. Lassailly, J. Peretti, N. Rougemaille, Phys. Rev. B 100, 205301 (2019)
7.
go back to reference A. Pandey, X. Liu, Z. Deng, W.J. Shin, D.A. Laleyan, K. Mashooq, E.T. Reid, E. Kioupakis, P. Bhattacharya, Z. Mi, Phys. Rev. Mater. 3, 053401 (2019) A. Pandey, X. Liu, Z. Deng, W.J. Shin, D.A. Laleyan, K. Mashooq, E.T. Reid, E. Kioupakis, P. Bhattacharya, Z. Mi, Phys. Rev. Mater. 3, 053401 (2019)
8.
go back to reference D.E. Yildiz, H.H. Gullu, A. Sarilmaz, F. Ozel, A. Kocyigit, M. Yildirim, J. Mater. Sci. 31, 935–948 (2020) D.E. Yildiz, H.H. Gullu, A. Sarilmaz, F. Ozel, A. Kocyigit, M. Yildirim, J. Mater. Sci. 31, 935–948 (2020)
9.
go back to reference A. Karabulut, A. Turut, S. Karatas, J. Mol. Struct. 1157, 513–518 (2018) A. Karabulut, A. Turut, S. Karatas, J. Mol. Struct. 1157, 513–518 (2018)
10.
go back to reference I.M. Afandiyeva, I. Dokme, S. Altindal, L.K. Abdullayeva, ShG Askerov, Microelectron. Eng. 85, 365–370 (2008) I.M. Afandiyeva, I. Dokme, S. Altindal, L.K. Abdullayeva, ShG Askerov, Microelectron. Eng. 85, 365–370 (2008)
11.
go back to reference I. Tascioglu, S.O. Tan, S. Altindal, J. Mater. Sci. 30, 11536–11541 (2019) I. Tascioglu, S.O. Tan, S. Altindal, J. Mater. Sci. 30, 11536–11541 (2019)
12.
go back to reference H.H. Gullu, D.E. Yildiz, J. Mater. Sci. 30, 19383–19393 (2019) H.H. Gullu, D.E. Yildiz, J. Mater. Sci. 30, 19383–19393 (2019)
13.
go back to reference Y. Slimania, B. Unal, E. Hannachi, A. Selmi, M.A. Almessiere, M. Nawaz, A. Baykal, I. Ercan, M. Yildiz, Ceram. Int. 45, 11989–12000 (2019) Y. Slimania, B. Unal, E. Hannachi, A. Selmi, M.A. Almessiere, M. Nawaz, A. Baykal, I. Ercan, M. Yildiz, Ceram. Int. 45, 11989–12000 (2019)
14.
go back to reference D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, Nature 399, 758–761 (1999) D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, Nature 399, 758–761 (1999)
15.
go back to reference A. Tataroglu, Microelect. Eng. 83, 2551–2557 (2006) A. Tataroglu, Microelect. Eng. 83, 2551–2557 (2006)
17.
go back to reference G. Paccihioni, L. Skuja, D.J. Griscom, Defects in SiO2 and Related Dielectrics: Science and Technology (Kluwer Academic Publishers, Dordhect, 2000) G. Paccihioni, L. Skuja, D.J. Griscom, Defects in SiO2 and Related Dielectrics: Science and Technology (Kluwer Academic Publishers, Dordhect, 2000)
18.
go back to reference R.S. Bonilla, P.R. Wilshaw, J. Phys. D 51, 025101 (2018) R.S. Bonilla, P.R. Wilshaw, J. Phys. D 51, 025101 (2018)
19.
go back to reference C. Leguijt, P. Lölgen, J.A. Eikelboom, A.W. Weeber, F.M. Schuurmans, W.C. Sinke, P.F.A. Alkemade, P.M. Sarro, C.H.M. Marée, L.A. Verhoef, Sol. Energy Mater. Sol Cell 40, 297–345 (1996) C. Leguijt, P. Lölgen, J.A. Eikelboom, A.W. Weeber, F.M. Schuurmans, W.C. Sinke, P.F.A. Alkemade, P.M. Sarro, C.H.M. Marée, L.A. Verhoef, Sol. Energy Mater. Sol Cell 40, 297–345 (1996)
20.
go back to reference Z.R. Chowdhury, K. Cho, N.P. Kherani, Appl. Phys. Lett. 101, 021601 (2012) Z.R. Chowdhury, K. Cho, N.P. Kherani, Appl. Phys. Lett. 101, 021601 (2012)
21.
go back to reference F. Yigiterol, H.H. Gullu, O. Bayrakli, D.E. Yildiz, J. Electron. Mater. 47, 2979–2987 (2018) F. Yigiterol, H.H. Gullu, O. Bayrakli, D.E. Yildiz, J. Electron. Mater. 47, 2979–2987 (2018)
22.
go back to reference O.A. Lukianova, V.V. Sirota, Ceram. Int. 43, 8284–8288 (2017) O.A. Lukianova, V.V. Sirota, Ceram. Int. 43, 8284–8288 (2017)
23.
go back to reference S. Altindal, O. Sevili, Y. Azizian Kalanaragh, J. Mater. Sci. 30, 9273–9280 (2019) S. Altindal, O. Sevili, Y. Azizian Kalanaragh, J. Mater. Sci. 30, 9273–9280 (2019)
24.
go back to reference M.M. Bulbul, Microelectron. Eng. 84, 124–128 (2007) M.M. Bulbul, Microelectron. Eng. 84, 124–128 (2007)
25.
go back to reference T. Ataseven, A. Tataroglu, Chin. Phys. B 22, 117310 (2013) T. Ataseven, A. Tataroglu, Chin. Phys. B 22, 117310 (2013)
26.
go back to reference F.Z. Pur, A. Tataroglu, Phys. Scr. 86, 035802 (2012) F.Z. Pur, A. Tataroglu, Phys. Scr. 86, 035802 (2012)
27.
go back to reference D.A. Zakheim, W.V. Lundin, A.V. Sakharov, E.E. Zavarin, P.N. Brunkov, E.Y. Lundina, A.F. Tsatsulnikov, S.Y. Karpov, Semicond. Sci. Technol. 33, 115008 (2018) D.A. Zakheim, W.V. Lundin, A.V. Sakharov, E.E. Zavarin, P.N. Brunkov, E.Y. Lundina, A.F. Tsatsulnikov, S.Y. Karpov, Semicond. Sci. Technol. 33, 115008 (2018)
28.
go back to reference W.J. Liu, I. Sayed, C. Gupta, H.R. Li, S. Keller, U. Mishra, Appl. Phys. Lett. 116, 022104 (2020) W.J. Liu, I. Sayed, C. Gupta, H.R. Li, S. Keller, U. Mishra, Appl. Phys. Lett. 116, 022104 (2020)
29.
go back to reference E. Acurio, N. Ronchi, B. De Jaeger, B. Bakeroot, S. Decoutere, L. Trojman, IEEE Trans. Electron. Dev. 99, 1–7 (2019) E. Acurio, N. Ronchi, B. De Jaeger, B. Bakeroot, S. Decoutere, L. Trojman, IEEE Trans. Electron. Dev. 99, 1–7 (2019)
30.
go back to reference T.Y. Lee, S.H. Lee, J.W. Son, S.J. Lee, J.H. Bong, E.J. Shin, S.H. Kim, W.S. Hwang, J.M. Moon, Y.K. Cho, B.J. Cho, Solid State Electron. 164, 107713 (2020) T.Y. Lee, S.H. Lee, J.W. Son, S.J. Lee, J.H. Bong, E.J. Shin, S.H. Kim, W.S. Hwang, J.M. Moon, Y.K. Cho, B.J. Cho, Solid State Electron. 164, 107713 (2020)
31.
go back to reference K. Muthuseenu, H.J. Barnaby, A. Patadia, K. Holbert, A. Privat, Microelectron. Reliab. 104, 113554 (2020) K. Muthuseenu, H.J. Barnaby, A. Patadia, K. Holbert, A. Privat, Microelectron. Reliab. 104, 113554 (2020)
32.
go back to reference Y. Shen, A.H. Jones, Y. Yuan, J.Y. Zheng, Y.W. Peng, B. VanMil, K. Olver, A.V. Sampath, C. Parker, E. Opila, J.C. Campell, Appl. Phys. Lett. 115, 261101 (2019) Y. Shen, A.H. Jones, Y. Yuan, J.Y. Zheng, Y.W. Peng, B. VanMil, K. Olver, A.V. Sampath, C. Parker, E. Opila, J.C. Campell, Appl. Phys. Lett. 115, 261101 (2019)
33.
go back to reference K. Kojima, H. Okumara, Appl. Phys. Lett. 116, 012103 (2020) K. Kojima, H. Okumara, Appl. Phys. Lett. 116, 012103 (2020)
34.
go back to reference E.E. Tanrikulu, D.E. Yildiz, A. Gunen, S. Altindal, Phys. Scr. 90, 095801 (2015) E.E. Tanrikulu, D.E. Yildiz, A. Gunen, S. Altindal, Phys. Scr. 90, 095801 (2015)
35.
go back to reference T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization (Wiley, New Delhi, 2014) T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization (Wiley, New Delhi, 2014)
36.
go back to reference T. Kimoto, Prog. Cryst. Growth Charact. Mater. 62, 329–351 (2016) T. Kimoto, Prog. Cryst. Growth Charact. Mater. 62, 329–351 (2016)
37.
go back to reference J. Singh, Semiconductor Devices: Basic Principles (Wiley, New Delhi, 2007) J. Singh, Semiconductor Devices: Basic Principles (Wiley, New Delhi, 2007)
38.
go back to reference J. Huang, Z. Huang, S. Yi, M. Fang, S. Zhang, Sci. Rep. 3, 3504 (2013) J. Huang, Z. Huang, S. Yi, M. Fang, S. Zhang, Sci. Rep. 3, 3504 (2013)
39.
go back to reference M. Levinshtein, S. Rumyantsev, M. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (Wiley, New York, 2001) M. Levinshtein, S. Rumyantsev, M. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (Wiley, New York, 2001)
40.
go back to reference S. Altindal, J. Mater. Sci. 30, 17032–17039 (2019) S. Altindal, J. Mater. Sci. 30, 17032–17039 (2019)
41.
go back to reference E. Arslan, Y. Safak, I. Tascioglu, H. Uslu, E. Ozbay, Microelectron. Eng. 87, 1997–2001 (2010) E. Arslan, Y. Safak, I. Tascioglu, H. Uslu, E. Ozbay, Microelectron. Eng. 87, 1997–2001 (2010)
42.
go back to reference H.H. Gullu, O. Bayrakli Surucu, M. Terlemezoglu, D.E. Yildiz, M. Parlak, J. Mater. Sci. 30, 9814–9821 (2019) H.H. Gullu, O. Bayrakli Surucu, M. Terlemezoglu, D.E. Yildiz, M. Parlak, J. Mater. Sci. 30, 9814–9821 (2019)
43.
go back to reference K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Status Solidi A 199, 507–514 (2003) K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Status Solidi A 199, 507–514 (2003)
44.
go back to reference H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yildirim, J. Alloys Compd. 827, 154279 (2020) H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yildirim, J. Alloys Compd. 827, 154279 (2020)
45.
go back to reference S.A. Yeriskin, M. Balbasi, I. Orak, J. Mater. Sci. 28, 14040–14048 (2017) S.A. Yeriskin, M. Balbasi, I. Orak, J. Mater. Sci. 28, 14040–14048 (2017)
46.
go back to reference I. Dokme, S. Altindal, T. Tunc, I. Uslu, Microelectron. Reliab. 50, 39–44 (2010) I. Dokme, S. Altindal, T. Tunc, I. Uslu, Microelectron. Reliab. 50, 39–44 (2010)
47.
go back to reference E.E. Tanrikulu, S. Demirezen, S. Altindal, I. Uslu, J Mater Sci. 29, 2890–2898 (2018) E.E. Tanrikulu, S. Demirezen, S. Altindal, I. Uslu, J Mater Sci. 29, 2890–2898 (2018)
48.
go back to reference V.V. Daniel, Dielectric Relaxation (Academic, London, 1967) V.V. Daniel, Dielectric Relaxation (Academic, London, 1967)
49.
go back to reference A. Tataroglu, I. Yucedag, S. Altindal, Microelectron. Eng. 85, 1518–1523 (2008) A. Tataroglu, I. Yucedag, S. Altindal, Microelectron. Eng. 85, 1518–1523 (2008)
50.
go back to reference I. Tascioglu, O.T. Ozmen, H.M. Sagban, E. Yaglioglu, S. Altindal, J. Electron Mater. 46, 2379–2386 (2017) I. Tascioglu, O.T. Ozmen, H.M. Sagban, E. Yaglioglu, S. Altindal, J. Electron Mater. 46, 2379–2386 (2017)
51.
go back to reference A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980) A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980)
52.
go back to reference D.E. Yildiz, M. Yildirim, M. Gokcen, J. Vac. Sci. Technol. A 33, 031509 (2014) D.E. Yildiz, M. Yildirim, M. Gokcen, J. Vac. Sci. Technol. A 33, 031509 (2014)
53.
go back to reference H.E. Lapa, A. Kokce, A.F. Ozdemir, I. Uslu, S. Altindal, Bull. Mater. Sci. 41, 82 (2018) H.E. Lapa, A. Kokce, A.F. Ozdemir, I. Uslu, S. Altindal, Bull. Mater. Sci. 41, 82 (2018)
54.
go back to reference M. Popescu, I. Bunget, Physics of Solid Dielectrics (Elseiver, Amsterdam, 1984) M. Popescu, I. Bunget, Physics of Solid Dielectrics (Elseiver, Amsterdam, 1984)
55.
go back to reference C.G. Turk, S.O. Tan, S. Altindal, B. Inem, Phys. B 582, 411979 (2020) C.G. Turk, S.O. Tan, S. Altindal, B. Inem, Phys. B 582, 411979 (2020)
56.
go back to reference A. Tataroglu, S. Altindal, Microelectron. Eng. 85, 1866–1871 (2008) A. Tataroglu, S. Altindal, Microelectron. Eng. 85, 1866–1871 (2008)
57.
go back to reference A. Kocyigit, I. Orak, A. Turut, Mater. Res. Exp. 5, 035906 (2018) A. Kocyigit, I. Orak, A. Turut, Mater. Res. Exp. 5, 035906 (2018)
58.
go back to reference O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868–7873 (1994) O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868–7873 (1994)
59.
go back to reference D.E. Yildiz, D.H. Apaydin, L. Toppare, J. Polym. Sci. 128, 1659–1664 (2013) D.E. Yildiz, D.H. Apaydin, L. Toppare, J. Polym. Sci. 128, 1659–1664 (2013)
60.
go back to reference D.E. Yildiz, S. Altindal, Optoelectron. Adv. Mater. 4, 1002–1007 (2010) D.E. Yildiz, S. Altindal, Optoelectron. Adv. Mater. 4, 1002–1007 (2010)
61.
go back to reference N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Mater. Sci. Semicond. Process 42, 378–382 (2016) N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Mater. Sci. Semicond. Process 42, 378–382 (2016)
62.
go back to reference A. Tataroglu, S. Altindal, M.M. Bulbul, Microelectron. Eng. 81, 140–149 (2005) A. Tataroglu, S. Altindal, M.M. Bulbul, Microelectron. Eng. 81, 140–149 (2005)
63.
go back to reference M.Z. Ahsan, F.A. Khan, M.A. Islam, Results Phys. 14, 102484 (2019) M.Z. Ahsan, F.A. Khan, M.A. Islam, Results Phys. 14, 102484 (2019)
64.
go back to reference A. Eroglu, A. Tataroglu, S. Altindal, Microelectron. Eng. 91, 154–158 (2012) A. Eroglu, A. Tataroglu, S. Altindal, Microelectron. Eng. 91, 154–158 (2012)
65.
go back to reference A. Ray, A. Roy, S. De, S. Chatterjee, S. Das, J. Appl. Phys. 123, 104102 (2018) A. Ray, A. Roy, S. De, S. Chatterjee, S. Das, J. Appl. Phys. 123, 104102 (2018)
66.
go back to reference S.A. Yeriskin, M. Balbasi, A. Tataroglu, J. Appl. Polym. Sci. 133, 43827 (2016) S.A. Yeriskin, M. Balbasi, A. Tataroglu, J. Appl. Polym. Sci. 133, 43827 (2016)
67.
go back to reference Y. Badali, S. Altindal, I. Uslu, Prog. Nat. Sci. 28, 325–331 (2018) Y. Badali, S. Altindal, I. Uslu, Prog. Nat. Sci. 28, 325–331 (2018)
68.
go back to reference M.O. Erdal, A. Kocyigit, M. Yildirim, Mater. Sci. Semicond. Proces. 103, 104620 (2019) M.O. Erdal, A. Kocyigit, M. Yildirim, Mater. Sci. Semicond. Proces. 103, 104620 (2019)
Metadata
Title
Temperature and frequency effects on electrical and dielectric properties of n-4H SiC based metal–insulator-semiconductor (MIS) diode interlayered with Si3N4 thin film
Authors
H. H. Gullu
D. E. Yildiz
Publication date
21-04-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03405-8

Other articles of this Issue 11/2020

Journal of Materials Science: Materials in Electronics 11/2020 Go to the issue