Skip to main content
Top
Published in: Measurement Techniques 3/2018

04-07-2018 | THERMAL MEASUREMENTS

Temperature Distribution Measurement in Polymer Composite Pipes During Their Heat Treatment with the Use of Microwave Radiation

Authors: V. N. Nefedov, A. V. Mamontov, V. P. Simonov, I. V. Nazarov

Published in: Measurement Techniques | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A method is proposed for constructing radial type microwave devices forming a uniform temperature distribution throughout the volume of pipes made of polymer composite materials The results of theoretical and experimental investigations of the temperature distribution across the thickness of the pipe material are given. The advantages of microwave technologies for curing polymer composite materials compared to traditional methods are shown.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. A. Berlin, “Modern polymer composite materials,” Soros. Obraz. Zh., No. 1, 57–65 (1995). A. A. Berlin, “Modern polymer composite materials,” Soros. Obraz. Zh., No. 1, 57–65 (1995).
2.
go back to reference M. L. Kerber, V. M. Vinogradov, and G. S. Golovkin, Polymer Composite Materials: Structure, Properties, Technology: Teach. Aid, A. A. Berlin (ed.), Professiya, St. Petersburg (2008). M. L. Kerber, V. M. Vinogradov, and G. S. Golovkin, Polymer Composite Materials: Structure, Properties, Technology: Teach. Aid, A. A. Berlin (ed.), Professiya, St. Petersburg (2008).
3.
go back to reference Yu. A. Mikhailin, Thermostable Polymers and Polymer Materials, Professiya, St. Petersburg (2006). Yu. A. Mikhailin, Thermostable Polymers and Polymer Materials, Professiya, St. Petersburg (2006).
4.
go back to reference K. E. Perepelkin, “Reinforcing fibers and fiber-reinforced polymer composites,” Nauch. Osn. Tekhnol., Moscow (2009). K. E. Perepelkin, “Reinforcing fibers and fiber-reinforced polymer composites,” Nauch. Osn. Tekhnol., Moscow (2009).
5.
go back to reference Yu. A. Mikhailin, “Special polymer composite materials,” Nauch. Osn. Tekhnol., Professiya, St. Petersburg (2009). Yu. A. Mikhailin, “Special polymer composite materials,” Nauch. Osn. Tekhnol., Professiya, St. Petersburg (2009).
6.
go back to reference I. V. Kubrakova, “Microwave radiation in analytical chemistry. Possibiities and prospects of use,” Usp. Khimii, 71, No. 4, 327–340 (2002). I. V. Kubrakova, “Microwave radiation in analytical chemistry. Possibiities and prospects of use,” Usp. Khimii, 71, No. 4, 327–340 (2002).
7.
go back to reference F. A. Shakhov, S. I. Maslennikov, M. S. Kireeva, et al., Proc. 4th Int. Conf. High Chemical Technology, Volgograd (1996), p. 95. F. A. Shakhov, S. I. Maslennikov, M. S. Kireeva, et al., Proc. 4th Int. Conf. High Chemical Technology, Volgograd (1996), p. 95.
8.
go back to reference D. L. Rakhmankulov, I. Kh. Bikbulatov, N. S. Shulaev, and S. Yu. Shavshukova, Microwave Radiation and Intensification of Chemical Processes, Khimiya, Moscow (2003). D. L. Rakhmankulov, I. Kh. Bikbulatov, N. S. Shulaev, and S. Yu. Shavshukova, Microwave Radiation and Intensification of Chemical Processes, Khimiya, Moscow (2003).
9.
go back to reference B. Bolasodun, A. Nesbitt, A. Wikinson, and R. Day, “Effect of curing method on physical and mechanical properties of araldite DLS 772/4 4 DDs epoxy system,” Int. J. Sci. Tech. Res., 2, No. 2, 12–18 (2013). B. Bolasodun, A. Nesbitt, A. Wikinson, and R. Day, “Effect of curing method on physical and mechanical properties of araldite DLS 772/4 4 DDs epoxy system,” Int. J. Sci. Tech. Res., 2, No. 2, 12–18 (2013).
10.
go back to reference D. J. Hill, G. A. Geoge, and D. G. Rogers, “A systematic study of the micrdowave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems,” Polym. Adv. Tech., No. 13(5), 353–362 (2002). D. J. Hill, G. A. Geoge, and D. G. Rogers, “A systematic study of the micrdowave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems,” Polym. Adv. Tech., No. 13(5), 353–362 (2002).
11.
go back to reference J. Wei, M. C. Hawley, J. D. Delon, and M. Demeuse, “Comparison of microwave and thermal cure of epoxy resins,” Polym. Eng. Sci., No. 33(17), 1132–1140 (1993). J. Wei, M. C. Hawley, J. D. Delon, and M. Demeuse, “Comparison of microwave and thermal cure of epoxy resins,” Polym. Eng. Sci., No. 33(17), 1132–1140 (1993).
12.
go back to reference E. Okress, Microwave Power Engineering, Mir, Moscow (1971). E. Okress, Microwave Power Engineering, Mir, Moscow (1971).
13.
go back to reference A. V. Mamontov, V. N. Nefedov, I. V. Nazarov, and T. A. Potapova, Microwave Technologies: Monograph, NIIPMT MIEM, Moscow (2008). A. V. Mamontov, V. N. Nefedov, I. V. Nazarov, and T. A. Potapova, Microwave Technologies: Monograph, NIIPMT MIEM, Moscow (2008).
14.
go back to reference V. N. Nefedov, “Modern technologies of composite materials heat treatment,” Life Sci. J., 11, No. 8, 512–515 (2014). V. N. Nefedov, “Modern technologies of composite materials heat treatment,” Life Sci. J., 11, No. 8, 512–515 (2014).
15.
go back to reference V. A. Lavrent’ev and S. G. Kalganova, “Use of microwave electromagnetic vibrations for acting on the process of curing epoxy resins,” Electrical and Thermal Technological Processes and Devices: Coll. Sci. Works, SGTU, Saratov (2005), Vol. 2, pp. 67–70. V. A. Lavrent’ev and S. G. Kalganova, “Use of microwave electromagnetic vibrations for acting on the process of curing epoxy resins,” Electrical and Thermal Technological Processes and Devices: Coll. Sci. Works, SGTU, Saratov (2005), Vol. 2, pp. 67–70.
16.
go back to reference V. A. Lavrent’ev and S. G. Kalganova, “Effect of the conditions of microwave curing on strength properties of an epoxy compound,” Problems of Electric Power Engineering: Coll. Sci. Works, SGTU, Saratov (2008), pp. 133–138. V. A. Lavrent’ev and S. G. Kalganova, “Effect of the conditions of microwave curing on strength properties of an epoxy compound,” Problems of Electric Power Engineering: Coll. Sci. Works, SGTU, Saratov (2008), pp. 133–138.
17.
go back to reference P. Navabpour, A. Nesbit, B. Degamber, et al., “Comparison of the curing kinetics of a DGEBA/acid anhydride epoxy resin system using differential scanning calorimetry and a microwave-heated calorimeter,” J. Appl. Polym. Sci., No. 104(3), 2054–2063 (2007). P. Navabpour, A. Nesbit, B. Degamber, et al., “Comparison of the curing kinetics of a DGEBA/acid anhydride epoxy resin system using differential scanning calorimetry and a microwave-heated calorimeter,” J. Appl. Polym. Sci., No. 104(3), 2054–2063 (2007).
18.
go back to reference T. A. Guseva, Improvement of the Technological Conditions of Curing Blanks of Parts Made of Organoplastics under the Effect of Microwave Radiation: Auth. Abstr. Disert. Cand. Tech. Sci., MGTU im. Baumana, Moscow (2014). T. A. Guseva, Improvement of the Technological Conditions of Curing Blanks of Parts Made of Organoplastics under the Effect of Microwave Radiation: Auth. Abstr. Disert. Cand. Tech. Sci., MGTU im. Baumana, Moscow (2014).
19.
go back to reference V. N. Nefedov, G. G. Valeev, S. V. Korneev, and Yu. V. Karpenko, Patent 2060600 RF, “Conveyor-type microwave oven,” Izobreteniya, No. 5 (1996). V. N. Nefedov, G. G. Valeev, S. V. Korneev, and Yu. V. Karpenko, Patent 2060600 RF, “Conveyor-type microwave oven,” Izobreteniya, No. 5 (1996).
20.
go back to reference A. Z. Fradin, Antenna Feeder Devices, Svyaz, Moscow (1977). A. Z. Fradin, Antenna Feeder Devices, Svyaz, Moscow (1977).
Metadata
Title
Temperature Distribution Measurement in Polymer Composite Pipes During Their Heat Treatment with the Use of Microwave Radiation
Authors
V. N. Nefedov
A. V. Mamontov
V. P. Simonov
I. V. Nazarov
Publication date
04-07-2018
Publisher
Springer US
Published in
Measurement Techniques / Issue 3/2018
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-018-1419-0

Other articles of this Issue 3/2018

Measurement Techniques 3/2018 Go to the issue