Skip to main content
Erschienen in: Measurement Techniques 3/2018

04.07.2018 | THERMAL MEASUREMENTS

Temperature Distribution Measurement in Polymer Composite Pipes During Their Heat Treatment with the Use of Microwave Radiation

verfasst von: V. N. Nefedov, A. V. Mamontov, V. P. Simonov, I. V. Nazarov

Erschienen in: Measurement Techniques | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A method is proposed for constructing radial type microwave devices forming a uniform temperature distribution throughout the volume of pipes made of polymer composite materials The results of theoretical and experimental investigations of the temperature distribution across the thickness of the pipe material are given. The advantages of microwave technologies for curing polymer composite materials compared to traditional methods are shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. A. Berlin, “Modern polymer composite materials,” Soros. Obraz. Zh., No. 1, 57–65 (1995). A. A. Berlin, “Modern polymer composite materials,” Soros. Obraz. Zh., No. 1, 57–65 (1995).
2.
Zurück zum Zitat M. L. Kerber, V. M. Vinogradov, and G. S. Golovkin, Polymer Composite Materials: Structure, Properties, Technology: Teach. Aid, A. A. Berlin (ed.), Professiya, St. Petersburg (2008). M. L. Kerber, V. M. Vinogradov, and G. S. Golovkin, Polymer Composite Materials: Structure, Properties, Technology: Teach. Aid, A. A. Berlin (ed.), Professiya, St. Petersburg (2008).
3.
Zurück zum Zitat Yu. A. Mikhailin, Thermostable Polymers and Polymer Materials, Professiya, St. Petersburg (2006). Yu. A. Mikhailin, Thermostable Polymers and Polymer Materials, Professiya, St. Petersburg (2006).
4.
Zurück zum Zitat K. E. Perepelkin, “Reinforcing fibers and fiber-reinforced polymer composites,” Nauch. Osn. Tekhnol., Moscow (2009). K. E. Perepelkin, “Reinforcing fibers and fiber-reinforced polymer composites,” Nauch. Osn. Tekhnol., Moscow (2009).
5.
Zurück zum Zitat Yu. A. Mikhailin, “Special polymer composite materials,” Nauch. Osn. Tekhnol., Professiya, St. Petersburg (2009). Yu. A. Mikhailin, “Special polymer composite materials,” Nauch. Osn. Tekhnol., Professiya, St. Petersburg (2009).
6.
Zurück zum Zitat I. V. Kubrakova, “Microwave radiation in analytical chemistry. Possibiities and prospects of use,” Usp. Khimii, 71, No. 4, 327–340 (2002). I. V. Kubrakova, “Microwave radiation in analytical chemistry. Possibiities and prospects of use,” Usp. Khimii, 71, No. 4, 327–340 (2002).
7.
Zurück zum Zitat F. A. Shakhov, S. I. Maslennikov, M. S. Kireeva, et al., Proc. 4th Int. Conf. High Chemical Technology, Volgograd (1996), p. 95. F. A. Shakhov, S. I. Maslennikov, M. S. Kireeva, et al., Proc. 4th Int. Conf. High Chemical Technology, Volgograd (1996), p. 95.
8.
Zurück zum Zitat D. L. Rakhmankulov, I. Kh. Bikbulatov, N. S. Shulaev, and S. Yu. Shavshukova, Microwave Radiation and Intensification of Chemical Processes, Khimiya, Moscow (2003). D. L. Rakhmankulov, I. Kh. Bikbulatov, N. S. Shulaev, and S. Yu. Shavshukova, Microwave Radiation and Intensification of Chemical Processes, Khimiya, Moscow (2003).
9.
Zurück zum Zitat B. Bolasodun, A. Nesbitt, A. Wikinson, and R. Day, “Effect of curing method on physical and mechanical properties of araldite DLS 772/4 4 DDs epoxy system,” Int. J. Sci. Tech. Res., 2, No. 2, 12–18 (2013). B. Bolasodun, A. Nesbitt, A. Wikinson, and R. Day, “Effect of curing method on physical and mechanical properties of araldite DLS 772/4 4 DDs epoxy system,” Int. J. Sci. Tech. Res., 2, No. 2, 12–18 (2013).
10.
Zurück zum Zitat D. J. Hill, G. A. Geoge, and D. G. Rogers, “A systematic study of the micrdowave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems,” Polym. Adv. Tech., No. 13(5), 353–362 (2002). D. J. Hill, G. A. Geoge, and D. G. Rogers, “A systematic study of the micrdowave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems,” Polym. Adv. Tech., No. 13(5), 353–362 (2002).
11.
Zurück zum Zitat J. Wei, M. C. Hawley, J. D. Delon, and M. Demeuse, “Comparison of microwave and thermal cure of epoxy resins,” Polym. Eng. Sci., No. 33(17), 1132–1140 (1993). J. Wei, M. C. Hawley, J. D. Delon, and M. Demeuse, “Comparison of microwave and thermal cure of epoxy resins,” Polym. Eng. Sci., No. 33(17), 1132–1140 (1993).
12.
Zurück zum Zitat E. Okress, Microwave Power Engineering, Mir, Moscow (1971). E. Okress, Microwave Power Engineering, Mir, Moscow (1971).
13.
Zurück zum Zitat A. V. Mamontov, V. N. Nefedov, I. V. Nazarov, and T. A. Potapova, Microwave Technologies: Monograph, NIIPMT MIEM, Moscow (2008). A. V. Mamontov, V. N. Nefedov, I. V. Nazarov, and T. A. Potapova, Microwave Technologies: Monograph, NIIPMT MIEM, Moscow (2008).
14.
Zurück zum Zitat V. N. Nefedov, “Modern technologies of composite materials heat treatment,” Life Sci. J., 11, No. 8, 512–515 (2014). V. N. Nefedov, “Modern technologies of composite materials heat treatment,” Life Sci. J., 11, No. 8, 512–515 (2014).
15.
Zurück zum Zitat V. A. Lavrent’ev and S. G. Kalganova, “Use of microwave electromagnetic vibrations for acting on the process of curing epoxy resins,” Electrical and Thermal Technological Processes and Devices: Coll. Sci. Works, SGTU, Saratov (2005), Vol. 2, pp. 67–70. V. A. Lavrent’ev and S. G. Kalganova, “Use of microwave electromagnetic vibrations for acting on the process of curing epoxy resins,” Electrical and Thermal Technological Processes and Devices: Coll. Sci. Works, SGTU, Saratov (2005), Vol. 2, pp. 67–70.
16.
Zurück zum Zitat V. A. Lavrent’ev and S. G. Kalganova, “Effect of the conditions of microwave curing on strength properties of an epoxy compound,” Problems of Electric Power Engineering: Coll. Sci. Works, SGTU, Saratov (2008), pp. 133–138. V. A. Lavrent’ev and S. G. Kalganova, “Effect of the conditions of microwave curing on strength properties of an epoxy compound,” Problems of Electric Power Engineering: Coll. Sci. Works, SGTU, Saratov (2008), pp. 133–138.
17.
Zurück zum Zitat P. Navabpour, A. Nesbit, B. Degamber, et al., “Comparison of the curing kinetics of a DGEBA/acid anhydride epoxy resin system using differential scanning calorimetry and a microwave-heated calorimeter,” J. Appl. Polym. Sci., No. 104(3), 2054–2063 (2007). P. Navabpour, A. Nesbit, B. Degamber, et al., “Comparison of the curing kinetics of a DGEBA/acid anhydride epoxy resin system using differential scanning calorimetry and a microwave-heated calorimeter,” J. Appl. Polym. Sci., No. 104(3), 2054–2063 (2007).
18.
Zurück zum Zitat T. A. Guseva, Improvement of the Technological Conditions of Curing Blanks of Parts Made of Organoplastics under the Effect of Microwave Radiation: Auth. Abstr. Disert. Cand. Tech. Sci., MGTU im. Baumana, Moscow (2014). T. A. Guseva, Improvement of the Technological Conditions of Curing Blanks of Parts Made of Organoplastics under the Effect of Microwave Radiation: Auth. Abstr. Disert. Cand. Tech. Sci., MGTU im. Baumana, Moscow (2014).
19.
Zurück zum Zitat V. N. Nefedov, G. G. Valeev, S. V. Korneev, and Yu. V. Karpenko, Patent 2060600 RF, “Conveyor-type microwave oven,” Izobreteniya, No. 5 (1996). V. N. Nefedov, G. G. Valeev, S. V. Korneev, and Yu. V. Karpenko, Patent 2060600 RF, “Conveyor-type microwave oven,” Izobreteniya, No. 5 (1996).
20.
Zurück zum Zitat A. Z. Fradin, Antenna Feeder Devices, Svyaz, Moscow (1977). A. Z. Fradin, Antenna Feeder Devices, Svyaz, Moscow (1977).
Metadaten
Titel
Temperature Distribution Measurement in Polymer Composite Pipes During Their Heat Treatment with the Use of Microwave Radiation
verfasst von
V. N. Nefedov
A. V. Mamontov
V. P. Simonov
I. V. Nazarov
Publikationsdatum
04.07.2018
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 3/2018
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-018-1419-0

Weitere Artikel der Ausgabe 3/2018

Measurement Techniques 3/2018 Zur Ausgabe