Skip to main content
Top
Published in: International Journal of Steel Structures 5/2018

31-05-2018

Temperature Effects on Fracture Toughness Parameters for Pipeline Steels

Authors: Sourayon Chanda, C. Q. Ru

Published in: International Journal of Steel Structures | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present article showcases a temperature dependent cohesive zone model (CZM)-based finite element simulation of drop weight tear test (DWTT), to analyse fracture behavior of pipeline steel (PS) at different temperatures. By co-relating the key CZM parameters with known mechanical properties of PS at varying temperature, a temperature dependent CZM for PS is proposed. A modified form of Johnson and Cook model has been used for the true stress–strain behavior of PS. The numerical model, using Abaqus/CAE 6.13, has been validated by comparing the predicted results with load–displacement curves obtained from test data. During steady-state crack propagation, toughness parameters (such as CTOA and CTOD) were found to remain fairly constant at a given temperature. These toughness parameters, however, show an exponential increase with increase in temperature. The present paper offers a plausible approach to numerically analyze fracture behavior of PS at varying temperature using a temperature dependent CZM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amstutz, B. E., et al. (1997). Effects of mixed mode I/II loading and grain orientation on crack initiation and stable tearing in 2024-T3 aluminum. Fatigue and Fracture Mechanics, 27, 105–125.CrossRef Amstutz, B. E., et al. (1997). Effects of mixed mode I/II loading and grain orientation on crack initiation and stable tearing in 2024-T3 aluminum. Fatigue and Fracture Mechanics, 27, 105–125.CrossRef
go back to reference Børvik, T., et al. (2001). A computational model of viscoplasticity and ductile damage for impact and penetration. European Journal of Mechanics-A/Solids, 20(5), 685–712.CrossRef Børvik, T., et al. (2001). A computational model of viscoplasticity and ductile damage for impact and penetration. European Journal of Mechanics-A/Solids, 20(5), 685–712.CrossRef
go back to reference Capelle, J., et al. (2013). Design based on ductile–brittle transition temperature for API 5L X65 steel used for dense CO 2 transport. Engineering Fracture Mechanics, 110, 270–280.CrossRef Capelle, J., et al. (2013). Design based on ductile–brittle transition temperature for API 5L X65 steel used for dense CO 2 transport. Engineering Fracture Mechanics, 110, 270–280.CrossRef
go back to reference Capelle, J., et al. (2014). Role of constraint on the shift of ductile–brittle transition temperature of subsize Charpy specimens. Fatigue and Fracture of Engineering Materials and Structures, 37(12), 1367–1376.CrossRef Capelle, J., et al. (2014). Role of constraint on the shift of ductile–brittle transition temperature of subsize Charpy specimens. Fatigue and Fracture of Engineering Materials and Structures, 37(12), 1367–1376.CrossRef
go back to reference Chanda, S. (2015). temperature effects on dynamic fracture of pipeline steel. M. Sc. Thesis, University of Alberta. Chanda, S. (2015). temperature effects on dynamic fracture of pipeline steel. M. Sc. Thesis, University of Alberta.
go back to reference Chanda, S. & Ru, C. Q. (2015a). Cohesive zone model for temperature dependent fracture analysis of pipeline steel. In Proceedings of 25th Canadian congress on applied mechanics (pp. 1–4). London, Ontario, Canada. Chanda, S. & Ru, C. Q. (2015a). Cohesive zone model for temperature dependent fracture analysis of pipeline steel. In Proceedings of 25th Canadian congress on applied mechanics (pp. 1–4). London, Ontario, Canada.
go back to reference Chanda, S. & Ru, C. Q. (2015b). FEA modeling of dynamic fracture of pipeline steel at low temperatures. In 9th European solid mechanics conference. Leganés-Madrid, Spain. Chanda, S. & Ru, C. Q. (2015b). FEA modeling of dynamic fracture of pipeline steel at low temperatures. In 9th European solid mechanics conference. Leganés-Madrid, Spain.
go back to reference Clausen, A. H., et al. (2004). Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering A, 364(1–2), 260–272.CrossRef Clausen, A. H., et al. (2004). Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering A, 364(1–2), 260–272.CrossRef
go back to reference Coseru, A., Capelle, J., & Pluvinage, G. (2013). On the use of Charpy transition temperature as reference temperature for the choice of a pipe steel. In 5th international conference on computational mechanics and virtual engineering (pp. 1–10). Brasov, Romania. Coseru, A., Capelle, J., & Pluvinage, G. (2013). On the use of Charpy transition temperature as reference temperature for the choice of a pipe steel. In 5th international conference on computational mechanics and virtual engineering (pp. 1–10). Brasov, Romania.
go back to reference Dunbar, A., et al. (2014). Simulation of ductile crack propagation and determination of CTOAs in pipeline steels using cohesive zone modelling. Fatigue and Fracture of Engineering Materials and Structures, 37(6), 592–602.CrossRef Dunbar, A., et al. (2014). Simulation of ductile crack propagation and determination of CTOAs in pipeline steels using cohesive zone modelling. Fatigue and Fracture of Engineering Materials and Structures, 37(6), 592–602.CrossRef
go back to reference Ebrahimi, F., & Seo, H. K. (1996). Ductile crack initiation. Acta Metallurgica, 44(2), 831–843. Ebrahimi, F., & Seo, H. K. (1996). Ductile crack initiation. Acta Metallurgica, 44(2), 831–843.
go back to reference Holmquist, T., & Johnson, G. (1991). Determination of constants and comparison of results for various constitutive models. Journal de Physique IV, 1(C3), 853–860.CrossRef Holmquist, T., & Johnson, G. (1991). Determination of constants and comparison of results for various constitutive models. Journal de Physique IV, 1(C3), 853–860.CrossRef
go back to reference Johnson, G., & Cook, W. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(I), 31–48.CrossRef Johnson, G., & Cook, W. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(I), 31–48.CrossRef
go back to reference Kang, K.-W., et al. (2009). Experimental investigation on static and fatigue behavior of welded sm490a steel under low temperature. International Journal of Steel Structures, 9(1), 85–91.CrossRef Kang, K.-W., et al. (2009). Experimental investigation on static and fatigue behavior of welded sm490a steel under low temperature. International Journal of Steel Structures, 9(1), 85–91.CrossRef
go back to reference Lam, P.-S., Kim, Y., & Chao, Y. J. (2005). Crack tip openinig displacement and angle for a growing crack in carbon steel. In ASME pressure vessels and piping division conference (pp. 1–8). Denver, Colorado, USA. Lam, P.-S., Kim, Y., & Chao, Y. J. (2005). Crack tip openinig displacement and angle for a growing crack in carbon steel. In ASME pressure vessels and piping division conference (pp. 1–8). Denver, Colorado, USA.
go back to reference Lee, D. H., et al. (2016). Seismic fragility analysis of a buried gas pipeline based on nonlinear time-history analysis. International Journal of Steel Structures, 16(1), 231–242.CrossRef Lee, D. H., et al. (2016). Seismic fragility analysis of a buried gas pipeline based on nonlinear time-history analysis. International Journal of Steel Structures, 16(1), 231–242.CrossRef
go back to reference Martínez-Palou, R., et al. (2011). Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of Petroleum Science and Engineering, 75(3–4), 274–282.CrossRef Martínez-Palou, R., et al. (2011). Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of Petroleum Science and Engineering, 75(3–4), 274–282.CrossRef
go back to reference Newman, J. C., James, M. A., & Zerbst, U. (2003). A review of the CTOA/CTOD fracture criterion. Engineering Fracture Mechanics, 70(3–4), 371–385.CrossRef Newman, J. C., James, M. A., & Zerbst, U. (2003). A review of the CTOA/CTOD fracture criterion. Engineering Fracture Mechanics, 70(3–4), 371–385.CrossRef
go back to reference Park, K., & Paulino, G. H. (2013). Cohesive zone models : A critical review of traction-separation relationships across fracture surfaces. Applied Mechanics Reviews, 64(2011), 20. Park, K., & Paulino, G. H. (2013). Cohesive zone models : A critical review of traction-separation relationships across fracture surfaces. Applied Mechanics Reviews, 64(2011), 20.
go back to reference Ren, Z. J., & Ru, C. Q. (2013). Numerical investigation of speed dependent dynamic fracture toughness of line pipe steels. Engineering Fracture Mechanics, 99, 214–222.CrossRef Ren, Z. J., & Ru, C. Q. (2013). Numerical investigation of speed dependent dynamic fracture toughness of line pipe steels. Engineering Fracture Mechanics, 99, 214–222.CrossRef
go back to reference Salvini, P., Fonzo, A., & Mannucci, G. (2003). Identification of CTOA and fracture process parameters by drop weight test and finite element simulation. Engineering Fracture Mechanics, 70(3–4), 553–566.CrossRef Salvini, P., Fonzo, A., & Mannucci, G. (2003). Identification of CTOA and fracture process parameters by drop weight test and finite element simulation. Engineering Fracture Mechanics, 70(3–4), 553–566.CrossRef
go back to reference Shim, D. J., Wilkowski, G., Duan, D. M., & Zhou, J. (2010). Effect of fracture speed on ductile fracture resistance—part 1: Experimental. In Proceedings of the 8th international pipeline conferencence. Calgary, Alberta, Canada. Shim, D. J., Wilkowski, G., Duan, D. M., & Zhou, J. (2010). Effect of fracture speed on ductile fracture resistance—part 1: Experimental. In Proceedings of the 8th international pipeline conferencence. Calgary, Alberta, Canada.
go back to reference Sorem, W. A., Dodds, R. H., & Rolfe, S. T. (1991). Effects of crack depth on elastic plastic fracture toughness. International Journal of Fracture, 47(2), 105–126.CrossRef Sorem, W. A., Dodds, R. H., & Rolfe, S. T. (1991). Effects of crack depth on elastic plastic fracture toughness. International Journal of Fracture, 47(2), 105–126.CrossRef
go back to reference Wang, X., Roy, G., Xu, S., & Tyson, W. R. (2007). Numerical simulation of ductile crack growth in pipeline steels. In ASME pressure vessels and piping division (pp. 1–7). San Antonio, Texas, USA. Wang, X., Roy, G., Xu, S., & Tyson, W. R. (2007). Numerical simulation of ductile crack growth in pipeline steels. In ASME pressure vessels and piping division (pp. 1–7). San Antonio, Texas, USA.
go back to reference Wang, Y. J. & Ru, C. Q. (2015). Determination of cohesive zone model’s parameters based on the uniaxial stress–strain curve. In Proceedings of the XIII international conference on mathematics and computational mechanics. Barcelona, Spain. Wang, Y. J. & Ru, C. Q. (2015). Determination of cohesive zone model’s parameters based on the uniaxial stress–strain curve. In Proceedings of the XIII international conference on mathematics and computational mechanics. Barcelona, Spain.
go back to reference Wang, Y. J., & Ru, C. Q. (2016). Determination of two key parameters of a cohesive zone model for pipeline steels based on uniaxial stress–strain curve. Engineering Fracture Mechanics, 163, 55–65.CrossRef Wang, Y. J., & Ru, C. Q. (2016). Determination of two key parameters of a cohesive zone model for pipeline steels based on uniaxial stress–strain curve. Engineering Fracture Mechanics, 163, 55–65.CrossRef
go back to reference Yu, P. S., & Ru, C. Q. (2015). Strain rate effects on dynamic fracture of pipeline steels: Finite element simulation. International Journal of Pressure Vessels and Piping, 126–127, 1–7.CrossRef Yu, P. S., & Ru, C. Q. (2015). Strain rate effects on dynamic fracture of pipeline steels: Finite element simulation. International Journal of Pressure Vessels and Piping, 126–127, 1–7.CrossRef
Metadata
Title
Temperature Effects on Fracture Toughness Parameters for Pipeline Steels
Authors
Sourayon Chanda
C. Q. Ru
Publication date
31-05-2018
Publisher
Korean Society of Steel Construction
Published in
International Journal of Steel Structures / Issue 5/2018
Print ISSN: 1598-2351
Electronic ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-018-0075-1

Other articles of this Issue 5/2018

International Journal of Steel Structures 5/2018 Go to the issue

Premium Partners