Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 1/2018

26-10-2017 | Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Template-assisted sol–gel synthesis of porous MoS2/C nanocomposites as anode materials for lithium-ion batteries

Authors: Xingzhong Guo, Pengan Yin, Zichen Wang, Hui Yang

Published in: Journal of Sol-Gel Science and Technology | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Porous MoS2/C nanocomposites have been successfully via a sol–gel route with ammonium molybdatetetrahydrate ((NH4)6Mo7O24·4H2O) as molybdenum source, glucose as carbon source and tetramethyloxysilane (TMOS) as gelation accelerator, subsequently followed by high-temperature sulfuration and further NaOH etching to remove silica template derived from TMOS. The as-prepared MoS2/C nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption, and the effect of molybdenum precursor mass on the synthesis of product was also investigated. The Mo and TMOS mass ratio obviously affects the gelation time, phase composition and morphology of the resultant product, and an appropriate Mo and TMOS mass ratio allows the formation of lamellar structure as well as perfect MoS2 phase. The as-prepared MoS2/C nanocomposite with Mo and TMOS mass ratio of 7:3 exhibits a BET surface area of 31 m2g−1 and a mesopore size of 20 nm, and demonstrates good electrochemical performances with 400 mA h g−1 specific reversible capacity after 60 cycles owing to the pore structure and synergistic effect between MoS2 and amorphous carbon.

Graphical abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4531-8/MediaObjects/10971_2017_4531_Figa_HTML.gif

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Whittingham MS (2004) Lithium batteries and cathode materials. Chem Inform 35:4271–4301 Whittingham MS (2004) Lithium batteries and cathode materials. Chem Inform 35:4271–4301
2.
go back to reference Matte HS, Gomathi A, Manna AK (2010) MoS2 and WS2 analogs of graphene. Angew Chem Int Ed 49:4059–4062CrossRef Matte HS, Gomathi A, Manna AK (2010) MoS2 and WS2 analogs of graphene. Angew Chem Int Ed 49:4059–4062CrossRef
3.
go back to reference Hwang H, Kim H, Cho J (2011) MoS2nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11(11):4826–4830CrossRef Hwang H, Kim H, Cho J (2011) MoS2nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11(11):4826–4830CrossRef
4.
go back to reference Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRef Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRef
5.
go back to reference Chrissafis K, Zamani M, Kambas K, Stoemenos J, Economou NA, Samaras I, Julien C (1989) Structural studies of MoS2 intercalated by lithium. Mater Sci Eng B 3:145–151CrossRef Chrissafis K, Zamani M, Kambas K, Stoemenos J, Economou NA, Samaras I, Julien C (1989) Structural studies of MoS2 intercalated by lithium. Mater Sci Eng B 3:145–151CrossRef
6.
go back to reference Li W, Tan C, Lowe MA, Abruna HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270CrossRef Li W, Tan C, Lowe MA, Abruna HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270CrossRef
7.
go back to reference Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic dirac billiard in graphene quantum dots. Science 320:356–358CrossRef Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic dirac billiard in graphene quantum dots. Science 320:356–358CrossRef
8.
go back to reference Zhang K, Mao L, Zhang LL, On Chan HS, Zhao XS, Wu J (2011) Surfactant-intercalated chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302–7307CrossRef Zhang K, Mao L, Zhang LL, On Chan HS, Zhao XS, Wu J (2011) Surfactant-intercalated chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302–7307CrossRef
9.
go back to reference Vargas OA, Caballero A, Morales J (2012) Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 4:2083–2092CrossRef Vargas OA, Caballero A, Morales J (2012) Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 4:2083–2092CrossRef
10.
go back to reference Xiang HF, Li ZD, Xie K, Jiang JZ, Chen JJ, Lian PC, Wu JS, Yu Y, Wang HH (2012) Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv 2: 6792–6799 Xiang HF, Li ZD, Xie K, Jiang JZ, Chen JJ, Lian PC, Wu JS, Yu Y, Wang HH (2012) Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv 2: 6792–6799
11.
go back to reference Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Nat, single-layer MoS2 transistors. Nanotechnology 6:147–150 Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Nat, single-layer MoS2 transistors. Nanotechnology 6:147–150
12.
go back to reference Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogs of graphene. Angew Chem 122:4153–4156CrossRef Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogs of graphene. Angew Chem 122:4153–4156CrossRef
13.
go back to reference Chen JS, Tan YL, Li CM, Cheah YL, Luan DY, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRef Chen JS, Tan YL, Li CM, Cheah YL, Luan DY, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRef
14.
go back to reference Dai YQ, Cobley CM, Zeng J, Sun YM, Xia YN (2009) Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. Nano Lett 9:2455–2459CrossRef Dai YQ, Cobley CM, Zeng J, Sun YM, Xia YN (2009) Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. Nano Lett 9:2455–2459CrossRef
15.
go back to reference Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS (2009) Synthesis of titania nanosheets with a large percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153CrossRef Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS (2009) Synthesis of titania nanosheets with a large percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153CrossRef
16.
go back to reference Liu G, Yang HG, Wang XW, Cheng LN, Pan J, Lu GQ, Cheng HM (2009) Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J Am Chem Soc 131:12868–12869CrossRef Liu G, Yang HG, Wang XW, Cheng LN, Pan J, Lu GQ, Cheng HM (2009) Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J Am Chem Soc 131:12868–12869CrossRef
17.
go back to reference Liu SW, Yu JG, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatasepolyhedra with exposed {001} Facets. J Am Chem Soc 132:11914–11916CrossRef Liu SW, Yu JG, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatasepolyhedra with exposed {001} Facets. J Am Chem Soc 132:11914–11916CrossRef
18.
go back to reference Xu X, Fan Z, Ding S, Yu D, Du Y (2014) Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale 6(10):5245–5250CrossRef Xu X, Fan Z, Ding S, Yu D, Du Y (2014) Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale 6(10):5245–5250CrossRef
19.
go back to reference Brivio J, Alexander DTL, Kis A (2011) Ripples and layers in ultrathin MoS2 membranes. Nano Lett 11(12):5148–5153CrossRef Brivio J, Alexander DTL, Kis A (2011) Ripples and layers in ultrathin MoS2 membranes. Nano Lett 11(12):5148–5153CrossRef
20.
go back to reference Fei L, Xu Y, Wu X, Chen G, Li Y (2014) Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries. Nanoscale 6:3664–3669CrossRef Fei L, Xu Y, Wu X, Chen G, Li Y (2014) Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries. Nanoscale 6:3664–3669CrossRef
21.
go back to reference Broadhead J, Trumbore FA, Basu S (1981) Metal chalcogenides as reversible cathodes in lithium cells and their future in telecommunications. J Electroanal Chem Interfacial Electrochem 118:241–250CrossRef Broadhead J, Trumbore FA, Basu S (1981) Metal chalcogenides as reversible cathodes in lithium cells and their future in telecommunications. J Electroanal Chem Interfacial Electrochem 118:241–250CrossRef
22.
go back to reference Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24CrossRef Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24CrossRef
23.
go back to reference Feng CQ, Ma J, Li H, Zeng R, Guo ZP, Liu HK (2009) Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater Res Bull 44:1811–1815CrossRef Feng CQ, Ma J, Li H, Zeng R, Guo ZP, Liu HK (2009) Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater Res Bull 44:1811–1815CrossRef
24.
go back to reference Li H, Li WJ, Ma L, Chen WX, Wang JM (2009) Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J. Alloys Compd 471:442–447CrossRef Li H, Li WJ, Ma L, Chen WX, Wang JM (2009) Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J. Alloys Compd 471:442–447CrossRef
25.
go back to reference Dominko R, Arcon D, Mrzel A, Zorko A, Cevc P, Venturini P, Gaberscek M, Remskar M, Mihailovic D (2002) Dichalcogenide nanotube electrodes for li-ion batteries. Adv Mater 14:1531–1534CrossRef Dominko R, Arcon D, Mrzel A, Zorko A, Cevc P, Venturini P, Gaberscek M, Remskar M, Mihailovic D (2002) Dichalcogenide nanotube electrodes for li-ion batteries. Adv Mater 14:1531–1534CrossRef
26.
go back to reference Yu Ha, Zhu C, Zhang K, Chen Y (2014) Three-dimensional hierarchical MoS2nanoflake array/ carbon cloth as high-performance flexible lithium-ion battery anodes. J Mater Chem A 2:4551–4557CrossRef Yu Ha, Zhu C, Zhang K, Chen Y (2014) Three-dimensional hierarchical MoS2nanoflake array/ carbon cloth as high-performance flexible lithium-ion battery anodes. J Mater Chem A 2:4551–4557CrossRef
27.
go back to reference Wang C, Wan W, Huang Y (2014) Hierarchical MoS2nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale 6:5351–5358CrossRef Wang C, Wan W, Huang Y (2014) Hierarchical MoS2nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale 6:5351–5358CrossRef
28.
go back to reference Yang L, Wang S, Mao J (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184 Yang L, Wang S, Mao J (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184
29.
go back to reference Yin Z, Li H, Li H, Jiang L, Shi Y (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80CrossRef Yin Z, Li H, Li H, Jiang L, Shi Y (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80CrossRef
30.
go back to reference Chang K, Chen* W (2011) L-cysteine-assisted synthesis of layered mos2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRef Chang K, Chen* W (2011) L-cysteine-assisted synthesis of layered mos2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRef
31.
go back to reference Zhang† K, Kim‡ H-J (2013) Xinjian shigraphene/acid coassisted synthesis of ultrathin MoS2nanosheets with outstanding rate capability for a lithium battery anode. Inorganic Chem 52:9807–9812CrossRef Zhang† K, Kim‡ H-J (2013) Xinjian shigraphene/acid coassisted synthesis of ultrathin MoS2nanosheets with outstanding rate capability for a lithium battery anode. Inorganic Chem 52:9807–9812CrossRef
32.
go back to reference Chang K, Chen W (2011) Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J Mater Chem 21(43):17175–17184CrossRef Chang K, Chen W (2011) Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J Mater Chem 21(43):17175–17184CrossRef
33.
go back to reference Wang Z, Chen T, Chen W, Chang K, Ma L (2013) CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater Chem A 1(6):2202–2210CrossRef Wang Z, Chen T, Chen W, Chang K, Ma L (2013) CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater Chem A 1(6):2202–2210CrossRef
34.
go back to reference Xie D, Tang W, Xia X, Wang D, Zhou D (2015) Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. J Power Sources 296:392–399CrossRef Xie D, Tang W, Xia X, Wang D, Zhou D (2015) Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. J Power Sources 296:392–399CrossRef
35.
go back to reference Guo X, Wang Z, Zhu W, Yang Hui (2017) The novel and facile preparation of multilayer MoS2 crystals by a chelation-assisted sol–gel method and their electrochemical performance. RSC Adv 7:9009–9014CrossRef Guo X, Wang Z, Zhu W, Yang Hui (2017) The novel and facile preparation of multilayer MoS2 crystals by a chelation-assisted sol–gel method and their electrochemical performance. RSC Adv 7:9009–9014CrossRef
36.
go back to reference Mao L, Zhang K, Chan HSO, Wu JS (2012) Nanostructured MnO2/graphene for supercapacitor electrodes: the sffect of morphology, crystallinity and composition. J Mater Chem 22:1845–1851CrossRef Mao L, Zhang K, Chan HSO, Wu JS (2012) Nanostructured MnO2/graphene for supercapacitor electrodes: the sffect of morphology, crystallinity and composition. J Mater Chem 22:1845–1851CrossRef
37.
go back to reference Li Hong, Zhang Qing, Yap CCR (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 221:1385–1390CrossRef Li Hong, Zhang Qing, Yap CCR (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 221:1385–1390CrossRef
38.
go back to reference Plechinger G, Heydrich S, Eroms J (2012) Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl Phys Lett 101:101906CrossRef Plechinger G, Heydrich S, Eroms J (2012) Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl Phys Lett 101:101906CrossRef
39.
go back to reference Biswanath Chakraborty HSS, Matte R (2013) Layer-dependent resonant Raman scattering of a few layer MoS2. J Raman Spectrosc 44:92–96CrossRef Biswanath Chakraborty HSS, Matte R (2013) Layer-dependent resonant Raman scattering of a few layer MoS2. J Raman Spectrosc 44:92–96CrossRef
40.
go back to reference Yu YF, Huang SY, Li YP, Steinmann SN, Yang WT, Cao LY (2014) Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett 14:553CrossRef Yu YF, Huang SY, Li YP, Steinmann SN, Yang WT, Cao LY (2014) Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett 14:553CrossRef
Metadata
Title
Template-assisted sol–gel synthesis of porous MoS2/C nanocomposites as anode materials for lithium-ion batteries
Authors
Xingzhong Guo
Pengan Yin
Zichen Wang
Hui Yang
Publication date
26-10-2017
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 1/2018
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4531-8

Other articles of this Issue 1/2018

Journal of Sol-Gel Science and Technology 1/2018 Go to the issue

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Effects of precursor concentration on electric properties of BiFe0.98Mn0.02O3 thin films prepared by sol–gel method

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Performance of hematite particles as an Iron source for the degradation of ornidazole in photo-fenton process

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Synthesis and characterization of Sm3+-doped ZnO nanoparticles via a sol–gel method and their photocatalytic application

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Study of crystallization behavior and kinetics of yttria-50 vol% magnesia composite nanopowders using a non-isothermal process

Original Paper: Fundamentals of sol-gel and hybrid materials processing

Effects of mannitol on the synthesis of ultra-fine ZrB2 powders

Premium Partners