Skip to main content
Top
Published in: Quantum Information Processing 10/2023

01-10-2023

The analysis of convergence of the bistatic multiphoton quantum radar cross section

Authors: Jie Hu, Huifang Li, Chenyang Xia

Published in: Quantum Information Processing | Issue 10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The quantum radar cross section (QRCS) is a vital basis for the design of quantum detection strategies and stealth structure optimization. To obtain an accurate multiphoton QRCS response, the target must have an adequate number of scatterers; otherwise, the response will be incorrect and highly distorted. However, the convergence of the QRCS under multiphoton detection is not yet clear. In this paper, we establish a change factor equation for multiphoton QRCS, which is verified by the typical warhead structure, a triangular plate of the bistatic quantum radar. Simulation results show that we can determine the asymptotic state of the response by establishing a change factor threshold. When the triangular plate is illuminated by six photons, a more appropriate threshold of change factor to obtain the most accurate bistatic multiphoton quantum radar cross section (BM-QRCS) response for all scattering angles would be \(-\,79\) dB. On this basis, we investigate the differences and connections between classical radar cross section (CRCS), monostatic multiphoton QRCS (MO-QRCS), and BM-QRCS. Furthermore, we reveal the effects of elevation and azimuthal incidence angles on the BM-QRCS. When selecting the appropriate elevation incidence angle and azimuthal incidence angle in the small photon number range, BM-QRCS exhibits the quantum advantage of mainlobe enhancement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maini, A.K.: Handbook of Defence Electronics and Optronics: Fundamentals, Technologies and Systems, 1st edn. Wiley, Newark (2018)CrossRef Maini, A.K.: Handbook of Defence Electronics and Optronics: Fundamentals, Technologies and Systems, 1st edn. Wiley, Newark (2018)CrossRef
2.
go back to reference Knott, E.F., Shaeffer, J.F., Tuley, M.T.: Radar Cross Section, 2nd edn. SciTech Pub, Raleigh (2004)CrossRef Knott, E.F., Shaeffer, J.F., Tuley, M.T.: Radar Cross Section, 2nd edn. SciTech Pub, Raleigh (2004)CrossRef
3.
go back to reference Lu, J.: Design Technology of Synthetic Aperture Radar, 1st edn. Wiley, Newark (2019)CrossRef Lu, J.: Design Technology of Synthetic Aperture Radar, 1st edn. Wiley, Newark (2019)CrossRef
4.
go back to reference Jia, Y., Liu, Y., Zhang, W., Wang, J., Liao, G.: In-band radar cross section reduction of slot array antenna. IEEE Access 6, 23561–23567 (2018)CrossRef Jia, Y., Liu, Y., Zhang, W., Wang, J., Liao, G.: In-band radar cross section reduction of slot array antenna. IEEE Access 6, 23561–23567 (2018)CrossRef
5.
go back to reference Huaitie, X., Kang, L., Hongqi, F.: Overview of quantum radar and target detection performance. J. Nat. Univ. Defense Technol. 36(6), 140–145 (2014) Huaitie, X., Kang, L., Hongqi, F.: Overview of quantum radar and target detection performance. J. Nat. Univ. Defense Technol. 36(6), 140–145 (2014)
6.
go back to reference Lloyd, S.: Enhanced sensitivity of photodetection via quantum illumination. Science (Am. Assoc. Adv. Sci.) 321(5895), 1463–1465 (2008)ADSCrossRef Lloyd, S.: Enhanced sensitivity of photodetection via quantum illumination. Science (Am. Assoc. Adv. Sci.) 321(5895), 1463–1465 (2008)ADSCrossRef
7.
go back to reference Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12(12), 724–733 (2018)ADSCrossRef Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12(12), 724–733 (2018)ADSCrossRef
8.
go back to reference Chang, C.W.S., Vadiraj, A.M., Bourassa, J., Balaji, B., Wilson, C.M.: Quantum-enhanced noise radar. Appl. Phys. Lett. 114(11), 112601 (2019)ADSCrossRef Chang, C.W.S., Vadiraj, A.M., Bourassa, J., Balaji, B., Wilson, C.M.: Quantum-enhanced noise radar. Appl. Phys. Lett. 114(11), 112601 (2019)ADSCrossRef
9.
go back to reference Usha Devi, A.R., Rajagopal, A.K.: Quantum target detection using entangled photons. Phys. Rev. A At. Mol. Opt. Phys. 79(6), 062320 (2009)ADSCrossRef Usha Devi, A.R., Rajagopal, A.K.: Quantum target detection using entangled photons. Phys. Rev. A At. Mol. Opt. Phys. 79(6), 062320 (2009)ADSCrossRef
10.
go back to reference Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114(19), 193102 (2013)ADSCrossRef Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114(19), 193102 (2013)ADSCrossRef
11.
go back to reference Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science (Am. Assoc. Adv. Sci.) 306(5700), 1330–1336 (2004)ADSCrossRef Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science (Am. Assoc. Adv. Sci.) 306(5700), 1330–1336 (2004)ADSCrossRef
12.
go back to reference You, C., Nellikka, A.C., De Leon, I., Magaña-Loaiza, O.S.: Multiparticle quantum plasmonics. Nanophotonics (Berlin, Germany) 9(6), 1243–1269 (2020) You, C., Nellikka, A.C., De Leon, I., Magaña-Loaiza, O.S.: Multiparticle quantum plasmonics. Nanophotonics (Berlin, Germany) 9(6), 1243–1269 (2020)
13.
go back to reference Lanzagorta, M.: Quantum Radar. Morgan & Claypool Publishers, San Rafael (2011) Lanzagorta, M.: Quantum Radar. Morgan & Claypool Publishers, San Rafael (2011)
14.
go back to reference Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets. Quantum Inf. Process. 16(1), 1–27 (2017)MathSciNetCrossRefMATH Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets. Quantum Inf. Process. 16(1), 1–27 (2017)MathSciNetCrossRefMATH
15.
go back to reference Liu, K., Xiao, H.-T., Fan, H.-Q.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31(3), 62–64 (2014)CrossRef Liu, K., Xiao, H.-T., Fan, H.-Q.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31(3), 62–64 (2014)CrossRef
16.
go back to reference Lanzagorta, M., Venegas-Andraca, S.: Algorithmic analysis of quantum radar cross sections, vol. 9461, pp. 946112–9461128. SPIE, Baltimore (2015) Lanzagorta, M., Venegas-Andraca, S.: Algorithmic analysis of quantum radar cross sections, vol. 9461, pp. 946112–9461128. SPIE, Baltimore (2015)
17.
go back to reference Tian, Z.-F., Wu, D., Hu, T., of Data, C., Target Engineering, Z.C. PLA Strategic Support Force Information Engineering University: Theoretical study of single-photon quantum radar cross-section of cylindrical curved surface. Wuli Xuebao 71(3), 34204 (2022) Tian, Z.-F., Wu, D., Hu, T., of Data, C., Target Engineering, Z.C. PLA Strategic Support Force Information Engineering University: Theoretical study of single-photon quantum radar cross-section of cylindrical curved surface. Wuli Xuebao 71(3), 34204 (2022)
18.
go back to reference Kun, C., Shuxin, C., Dewei, W., Xi, W., Mi, S.: Analysis of quantum radar cross section of curved surface target. Guangxué xuébào 36(12), 1227002 (2016) Kun, C., Shuxin, C., Dewei, W., Xi, W., Mi, S.: Analysis of quantum radar cross section of curved surface target. Guangxué xuébào 36(12), 1227002 (2016)
19.
go back to reference Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Electric and magnetic target polarization in quantum radar. In: Ranney, K.I., Doerry, A. (eds) vol. 10188, pp. 101880–10188010. SPIE, Anaheim (2017) Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Electric and magnetic target polarization in quantum radar. In: Ranney, K.I., Doerry, A. (eds) vol. 10188, pp. 101880–10188010. SPIE, Anaheim (2017)
20.
go back to reference Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Analytical formulation of the quantum electromagnetic cross section, vol. 9829, pp. 98291–982918. SPIE, Baltimore (2016) Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Analytical formulation of the quantum electromagnetic cross section, vol. 9829, pp. 98291–982918. SPIE, Baltimore (2016)
21.
go back to reference Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: The effect of polarization on the quantum radar cross section response. IEEE J. Quantum Electron. 53(2), 1–9 (2017)CrossRefMATH Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: The effect of polarization on the quantum radar cross section response. IEEE J. Quantum Electron. 53(2), 1–9 (2017)CrossRefMATH
22.
go back to reference Shi-Long, X., Yi-Hua, H., Nan-Xiang, Z., Yang-Yang, W., Le, L., Li-Ren, G.: Impact of metal target’s atom lattice structure on its quantum radar cross-section. Wuli Xuebao 64(15), 154203 (2015) Shi-Long, X., Yi-Hua, H., Nan-Xiang, Z., Yang-Yang, W., Le, L., Li-Ren, G.: Impact of metal target’s atom lattice structure on its quantum radar cross-section. Wuli Xuebao 64(15), 154203 (2015)
23.
go back to reference Tian, Z., Wu, D., Hu, T.: Analysis of quantum radar cross-section of dihedral corner reflector. IEEE Photonics Technol. Lett. 33(22), 1250–1253 (2021)ADSCrossRef Tian, Z., Wu, D., Hu, T.: Analysis of quantum radar cross-section of dihedral corner reflector. IEEE Photonics Technol. Lett. 33(22), 1250–1253 (2021)ADSCrossRef
24.
go back to reference Tian, Z., Wu, D., Hu, T.: Fourier expression of the quantum radar cross section of a dihedral corner reflector. IEEE Photonics J. 13(4), 1–6 (2021)CrossRef Tian, Z., Wu, D., Hu, T.: Fourier expression of the quantum radar cross section of a dihedral corner reflector. IEEE Photonics J. 13(4), 1–6 (2021)CrossRef
25.
go back to reference Fang, C.: The simulation and analysis of quantum radar cross section for three-dimensional convex targets. IEEE Photonics J. 10(1), 1–8 (2018) Fang, C.: The simulation and analysis of quantum radar cross section for three-dimensional convex targets. IEEE Photonics J. 10(1), 1–8 (2018)
26.
go back to reference Fang, C.: The calculation of quantum radar scattering characteristic for the 3d circular cone target. In: 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), Suntec City, Singapore, pp. 248–250 (2018) Fang, C.: The calculation of quantum radar scattering characteristic for the 3d circular cone target. In: 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), Suntec City, Singapore, pp. 248–250 (2018)
27.
go back to reference Fang, C.: The analysis of mainlobe-slumping quantum effect of the cube in the scattering characteristics of quantum radar. IEEE access 7, 141055–141061 (2019)CrossRef Fang, C.: The analysis of mainlobe-slumping quantum effect of the cube in the scattering characteristics of quantum radar. IEEE access 7, 141055–141061 (2019)CrossRef
28.
go back to reference Wei, N., Zhu, S.: Analysis and simulation of quantum scattering characteristics of target based on spatial correlation, pp. 396–402. IEEE, Hangzhou (2021) Wei, N., Zhu, S.: Analysis and simulation of quantum scattering characteristics of target based on spatial correlation, pp. 396–402. IEEE, Hangzhou (2021)
29.
go back to reference Tian, Z., Wu, D., Hu, T.: Closed-form expressions and analysis for the slumping effect of a cuboid in the scattering characteristics of quantum radar. Opt. Express 29(21), 34077–34084 (2021)ADSCrossRef Tian, Z., Wu, D., Hu, T.: Closed-form expressions and analysis for the slumping effect of a cuboid in the scattering characteristics of quantum radar. Opt. Express 29(21), 34077–34084 (2021)ADSCrossRef
30.
go back to reference Fang, C., Tan, H., Liu, Q.-F., Tao, L., Xiao, L., Chen, Y., Hua, L.: The calculation and analysis of the bistatic quantum radar cross section for the typical 2-d plate. IEEE Photonics J. 10(2), 1–14 (2018)CrossRef Fang, C., Tan, H., Liu, Q.-F., Tao, L., Xiao, L., Chen, Y., Hua, L.: The calculation and analysis of the bistatic quantum radar cross section for the typical 2-d plate. IEEE Photonics J. 10(2), 1–14 (2018)CrossRef
31.
go back to reference Fang, C.: The closed-form expressions for the bistatic quantum radar cross section of the typical simple plates. IEEE Sens. J. 20(5), 2348–2355 (2020)ADSCrossRef Fang, C.: The closed-form expressions for the bistatic quantum radar cross section of the typical simple plates. IEEE Sens. J. 20(5), 2348–2355 (2020)ADSCrossRef
32.
go back to reference Lanzagorta, M.: Amplification of radar and lidar signatures using quantum sensors, vol. 8734, pp. 87340–8734011. SPIE, Baltimore (2013) Lanzagorta, M.: Amplification of radar and lidar signatures using quantum sensors, vol. 8734, pp. 87340–8734011. SPIE, Baltimore (2013)
33.
go back to reference Tian, Z., Wu, D., Xu, Y., Zhou, X., Zhang, Y., Hu, T.: Closed-form model and analysis for the enhancement effect of a rectangular plate in the scattering characteristics of multiphoton quantum radar. Opt. Express 30(12), 20203 (2022)ADSCrossRef Tian, Z., Wu, D., Xu, Y., Zhou, X., Zhang, Y., Hu, T.: Closed-form model and analysis for the enhancement effect of a rectangular plate in the scattering characteristics of multiphoton quantum radar. Opt. Express 30(12), 20203 (2022)ADSCrossRef
34.
go back to reference Hu, J., Li, H., Xia, C.: Analysis of bistatic quantum radar cross section for multi-photon illumination of typical ship structure. Quantum Inf. Process. 21(5), 179 (2022)ADSCrossRef Hu, J., Li, H., Xia, C.: Analysis of bistatic quantum radar cross section for multi-photon illumination of typical ship structure. Quantum Inf. Process. 21(5), 179 (2022)ADSCrossRef
35.
go back to reference Fang, C., Chen, Y., Xu, Y., Hua, L.: The analysis of change factor of the simulation of the bistatic quantum radar cross section for the typical ship structure. In: 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), Auckland, pp. 190–193 (2018) Fang, C., Chen, Y., Xu, Y., Hua, L.: The analysis of change factor of the simulation of the bistatic quantum radar cross section for the typical ship structure. In: 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), Auckland, pp. 190–193 (2018)
36.
go back to reference Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Cross section equivalence between photons and non-relativistic massive particles for targets with complex geometries. Progress Electromagn. Res. M 54, 37–46 (2017)CrossRef Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Cross section equivalence between photons and non-relativistic massive particles for targets with complex geometries. Progress Electromagn. Res. M 54, 37–46 (2017)CrossRef
Metadata
Title
The analysis of convergence of the bistatic multiphoton quantum radar cross section
Authors
Jie Hu
Huifang Li
Chenyang Xia
Publication date
01-10-2023
Publisher
Springer US
Published in
Quantum Information Processing / Issue 10/2023
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04119-6

Other articles of this Issue 10/2023

Quantum Information Processing 10/2023 Go to the issue