Skip to main content
Top
Published in: Journal of Polymer Research 6/2020

01-06-2020 | ORIGINAL PAPER

The bond strength–coordination number fluctuation model of viscosity: Concept and applications

Authors: Masaru Aniya, Masahiro Ikeda

Published in: Journal of Polymer Research | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The viscous flow of materials above the glass-transition temperature is a dissipative process which occurs accompanied by the internal friction and thus involves many-body interactions among the constituent elements. To understand the structural relaxation of supercooled liquids, we have proposed the Bond Strength–Coordination Number Fluctuation (BSCNF) model that describes the temperature dependence of the viscosity in terms of the mean values of the bond strength E0 and the coordination number Z0, and their fluctuations ΔE and ΔZ of the structural units that form the melt. In this work, firstly, after reviewing the concept and formulations of the BSCNF model, we show some applications of the model to polymers and ionic liquids. We also discuss on a theoretical foundation of the VFT law in terms of the BSCNF model, and its relation with the WLF equation is presented. A directionality in the study of structural relaxation is pointed out based on the statistical aspect of the BSCNF model. Finally, in connection with the decoupling mechanism which is crucial to understand the properties of superionic polymer conductors, we mention on the Arrhenius crossover phenomenon in the ionic conduction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zheng Q, Mauro JC (2017). J Am Ceram Soc 100:6–25 Zheng Q, Mauro JC (2017). J Am Ceram Soc 100:6–25
2.
go back to reference Ojovan MI (2012). Phys Chem Glass Eur J Glass Sci Technol B 53:143–150 Ojovan MI (2012). Phys Chem Glass Eur J Glass Sci Technol B 53:143–150
3.
go back to reference Angell CA (1991). J Non-Cryst Solids 131-133:13–31 Angell CA (1991). J Non-Cryst Solids 131-133:13–31
4.
go back to reference Sangwal K (2018) Nucleation and crystal growth. Wiley, Hoboken Sangwal K (2018) Nucleation and crystal growth. Wiley, Hoboken
5.
go back to reference Rudolph P (2016). Prog Cryst Growth Character Mater 62:89–110 Rudolph P (2016). Prog Cryst Growth Character Mater 62:89–110
6.
7.
go back to reference Fulcher GS (1925). J Am Ceram Soc 8:339–355 Fulcher GS (1925). J Am Ceram Soc 8:339–355
8.
go back to reference Tammann G, Hesse W (1926). Z Anorg Allg Chem 156:245–257 Tammann G, Hesse W (1926). Z Anorg Allg Chem 156:245–257
9.
go back to reference Williams ML, Landel RF, Ferry JD (1955). J Am Chem Soc 77:3701–3707 Williams ML, Landel RF, Ferry JD (1955). J Am Chem Soc 77:3701–3707
11.
go back to reference Avramov I, Milchev A (1988). J Non-Cryst Solids 104:253–260 Avramov I, Milchev A (1988). J Non-Cryst Solids 104:253–260
12.
go back to reference Aniya M (2002). J Therm Anal Calorim 69:971–978 Aniya M (2002). J Therm Anal Calorim 69:971–978
13.
go back to reference Ferreira AGM, Egas APV, Fonseca IMA, Costa AC, Abreu DC, Lobo LQ (2017). J Chem Thermodyn 113:162–182 Ferreira AGM, Egas APV, Fonseca IMA, Costa AC, Abreu DC, Lobo LQ (2017). J Chem Thermodyn 113:162–182
14.
go back to reference Adam G, Gibbs JH (1965). J Chem Phys 43:139–146 Adam G, Gibbs JH (1965). J Chem Phys 43:139–146
15.
16.
go back to reference Cohen MH, Grest GS (1979). Phys Rev B 20:1077–1098 Cohen MH, Grest GS (1979). Phys Rev B 20:1077–1098
17.
go back to reference Ikeda M, Aniya M (2010). Intermetallics 18:1796–1799 Ikeda M, Aniya M (2010). Intermetallics 18:1796–1799
18.
go back to reference Ikeda M, Aniya M (2013). J Non-Cryst Solids 371-372:53–57 Ikeda M, Aniya M (2013). J Non-Cryst Solids 371-372:53–57
19.
go back to reference Aniya M, Ikeda M (2013). Phys Procedia 48:113–119 Aniya M, Ikeda M (2013). Phys Procedia 48:113–119
20.
go back to reference Ikeda M, Aniya M (2017). Eur Polym J 86:29–40 Ikeda M, Aniya M (2017). Eur Polym J 86:29–40
21.
go back to reference Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2019). J Solid State Electrochem 23:1727–1737 Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2019). J Solid State Electrochem 23:1727–1737
22.
go back to reference Diwan P, Chandra A (2013). J Polym Res 20:324 Diwan P, Chandra A (2013). J Polym Res 20:324
23.
go back to reference Kurinchyselvan S, Hariharan A, Prabunathan P, Gomathipriya P, Alagar M (2019). J Polym Res 26:207 Kurinchyselvan S, Hariharan A, Prabunathan P, Gomathipriya P, Alagar M (2019). J Polym Res 26:207
25.
go back to reference Jaiswal A, Egami T, Kelton KF, Schweizer KS, Zhang Y (2016). Phys Rev Lett 117:205701PubMed Jaiswal A, Egami T, Kelton KF, Schweizer KS, Zhang Y (2016). Phys Rev Lett 117:205701PubMed
26.
go back to reference Popova VA, Surovtsev NV (2014). Phys Rev E 90:032308 Popova VA, Surovtsev NV (2014). Phys Rev E 90:032308
27.
go back to reference Surovtsev NV (2009). Chem Phys Lett 477:57–59 Surovtsev NV (2009). Chem Phys Lett 477:57–59
28.
go back to reference Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018). J Sci Adv Mater Devices 3:1–17 Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018). J Sci Adv Mater Devices 3:1–17
29.
go back to reference Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y (2018). Solid State Ionics 318:2–18 Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y (2018). Solid State Ionics 318:2–18
30.
go back to reference Wang Y, Sokolov AP (2015). Curr Opin Chem Eng 7:113–119 Wang Y, Sokolov AP (2015). Curr Opin Chem Eng 7:113–119
31.
go back to reference Novikov VN, Sokolov AP (2004). Nature 431:961–963 Novikov VN, Sokolov AP (2004). Nature 431:961–963
32.
go back to reference Ikeda M, Aniya M (2016). J Non-Cryst Solids 431:52–56 Ikeda M, Aniya M (2016). J Non-Cryst Solids 431:52–56
33.
go back to reference Hempel E, Hempel G, Hensel A, Schick C, Donth E (2000). J Phys Chem B 104:2460–2466 Hempel E, Hempel G, Hensel A, Schick C, Donth E (2000). J Phys Chem B 104:2460–2466
34.
go back to reference Saiter A, Prevosto D, Passaglia E, Couderc H, Delbreilh L, Saiter JM (2013). Phys Rev E 88:042605 Saiter A, Prevosto D, Passaglia E, Couderc H, Delbreilh L, Saiter JM (2013). Phys Rev E 88:042605
35.
go back to reference Ikeda M, Aniya M (2018). J Therm Anal Calorim 132:835–843 Ikeda M, Aniya M (2018). J Therm Anal Calorim 132:835–843
36.
go back to reference Meier R, Herrmann A, Hofmann M, Schmidtke B, Kresse B, Privalov AF, Kruk D, Fujara F, Rössler EA (2013). Macromolecules 46:5538–5548 Meier R, Herrmann A, Hofmann M, Schmidtke B, Kresse B, Privalov AF, Kruk D, Fujara F, Rössler EA (2013). Macromolecules 46:5538–5548
37.
go back to reference Soklaski R, Tran V, Nussinov Z, Kelton KF, Yang L (2016). Phil Mag 96:1212–1227 Soklaski R, Tran V, Nussinov Z, Kelton KF, Yang L (2016). Phil Mag 96:1212–1227
38.
go back to reference Hecksher T, Nielsen AI, Olsen NB, Dyre JC (2008). Nat Phys 4:737–741 Hecksher T, Nielsen AI, Olsen NB, Dyre JC (2008). Nat Phys 4:737–741
39.
40.
41.
go back to reference Bower DI (2002) An introduction to polymer physics. Cambridge UP, Cambridge Bower DI (2002) An introduction to polymer physics. Cambridge UP, Cambridge
42.
go back to reference Sakaguchi Y, Hanashima T, Ohara K, Simon AAA, Mitkova M (2019). Phys Rev Mater 3:035601 Sakaguchi Y, Hanashima T, Ohara K, Simon AAA, Mitkova M (2019). Phys Rev Mater 3:035601
43.
go back to reference Zeidler A, Salmon PS, Martin RA, Usuki T, Mason PE, Cuello GJ, Kohara S, Fischer HE (2010). Phys Rev B 82:104208 Zeidler A, Salmon PS, Martin RA, Usuki T, Mason PE, Cuello GJ, Kohara S, Fischer HE (2010). Phys Rev B 82:104208
44.
go back to reference Stickel F, Fischer EW, Richert R (1996). J Chem Phys 104:2043–2055 Stickel F, Fischer EW, Richert R (1996). J Chem Phys 104:2043–2055
45.
go back to reference Novikov VN (2016). Chem Phys Lett 659:133–136 Novikov VN (2016). Chem Phys Lett 659:133–136
46.
go back to reference Martinez-Garcia JC, Martinez-Garcia J, Rzoska SJ, Hulliger J (2012). J Chem Phys 137:064501PubMed Martinez-Garcia JC, Martinez-Garcia J, Rzoska SJ, Hulliger J (2012). J Chem Phys 137:064501PubMed
47.
go back to reference Schmidtke B, Petzold N, Pötzschner B, Weingärtner H, Rössler EA (2014). J Phys Chem B 118:7108–7118 Schmidtke B, Petzold N, Pötzschner B, Weingärtner H, Rössler EA (2014). J Phys Chem B 118:7108–7118
48.
go back to reference Tokuda H, Hayamizu K, Ishii K, Susan MADH, Watanabe M (2004). J Phys Chem B 108:16593–16600 Tokuda H, Hayamizu K, Ishii K, Susan MADH, Watanabe M (2004). J Phys Chem B 108:16593–16600
49.
go back to reference Tanaka H (2005). J Non-Cryst Solids 351:3371–3384 Tanaka H (2005). J Non-Cryst Solids 351:3371–3384
50.
go back to reference Aniya M, Ikeda M (2018). Mater Sci Forum 941:2331–2336 Aniya M, Ikeda M (2018). Mater Sci Forum 941:2331–2336
51.
go back to reference Jaiswal A, O’Keeffe S, Mills R, Podlesynak A, Ehlers G, Dmowski W, Lokshin K, Stevick J, Egami T, Zhang Y (2016). J Phys Chem B 120:1142–1148 Jaiswal A, O’Keeffe S, Mills R, Podlesynak A, Ehlers G, Dmowski W, Lokshin K, Stevick J, Egami T, Zhang Y (2016). J Phys Chem B 120:1142–1148
52.
go back to reference Voronel A, Veliyulin E, Machavariani VS, Kisliuk A, Quitmann D (1998). Phys Rev Lett 80:2630–2633 Voronel A, Veliyulin E, Machavariani VS, Kisliuk A, Quitmann D (1998). Phys Rev Lett 80:2630–2633
Metadata
Title
The bond strength–coordination number fluctuation model of viscosity: Concept and applications
Authors
Masaru Aniya
Masahiro Ikeda
Publication date
01-06-2020
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 6/2020
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-020-02066-9

Other articles of this Issue 6/2020

Journal of Polymer Research 6/2020 Go to the issue

Premium Partners