Skip to main content
Top

2020 | OriginalPaper | Chapter

The Collatz Process Embeds a Base Conversion Algorithm

Authors : Tristan Stérin, Damien Woods

Published in: Reachability Problems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Collatz process is defined on natural numbers by iterating the map \(T(x) = T_0(x) = x/2\) when \(x\in \mathbb {N}\) is even and \(T(x)=T_1(x) =(3x+1)/2\) when x is odd. In an effort to understand its dynamics, and since Generalised Collatz Maps are known to simulate Turing Machines [Conway, 1972], it seems natural to ask what kinds of algorithmic behaviours it embeds. We define a quasi-cellular automaton that exactly simulates the Collatz process on the square grid: on input \(x\in \mathbb {N}\), written horizontally in base 2, successive rows give the Collatz sequence of x in base 2. We show that vertical columns simultaneously iterate the map in base 3. This leads to our main result: the Collatz process embeds an algorithm that converts any natural number from base 3 to base 2. We also find that the evolution of our automaton computes the parity of the number of 1s in any ternary input. It follows that predicting about half of the bits of the iterates \(T^i(x)\), for \(i = O(\log x)\), is in the complexity class NC\(^1\) but outside AC\(^0\). These results show that the Collatz process is capable of some simple, but non-trivial, computation in bases 2 and 3, suggesting an algorithmic approach to thinking about prediction and existence of cycles in the Collatz process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The CQCA could easily be altered to remove the non-local rule and have it be a CA, but the obvious ways to do so would involve using more states and make the mapping to the Collatz process less direct. The CQCA has the freezing property  [9, 27]; states change obey a partial order, with a constant number of changes permitted per cell.
 
2
The problem is closely related to the 2-counter machine problem: when simulating Turing machines, are 2-counter machines exponentially slower than 3-counter machines? See, for example,  [14, 18, 22].
 
3
Comprehensive instructions and tutorial at: https://​github.​com/​tcosmo/​simcqca.
 
4
Furthermore, although the following fact is not used in the rest of this paper, one can prove that limit configurations contain no half-defined cells: each cell is either defined or undefined.
 
5
The CQCA defined states are (0, 0), (0, 1), (1, 0), (1, 1) and they respectively map to base \(3'\) symbols \(0,\bar{0},1, \bar{1}\).
 
6
The set \(\mathbb {Z}_2\cap \mathbb {Q}\) exactly corresponds to irreducible fractions with odd denominator and parity is given by the parity of the numerator. For instance, the first Collatz steps of \(-\frac{4}{23}\) are: \((-\frac{4}{23},-\frac{2}{23},-\frac{1}{23},\frac{10}{23},\frac{5}{23},\,\dots )\). It reaches the cycle \((\frac{5}{23},\frac{19}{23},\frac{40}{23},\frac{20}{23},\frac{10}{23},\frac{5}{23}\) ...).
 
7
Here, uniform has the meaning used in Boolean circuit complexity: that members of the circuit family for an infinite problem (set of words) are produced by a suitably simple algorithm  [10]. The class AC\(^0\) is of interest as it is “simple” enough to be strictly contained in P, that is, AC\(^0 \subsetneq \) P  [22]. This enables us to give lower bounds to the computational complexity, or inherent difficulty, of some problems, such as the bounded CQCA prediction problem.
 
Literature
6.
go back to reference Cloney, T., Goles, E., Vichniac, G.Y.: The \(3x+1\) problem: a quasi cellular automaton. Complex Syst. 1(2), 349–360 (1987)MATH Cloney, T., Goles, E., Vichniac, G.Y.: The \(3x+1\) problem: a quasi cellular automaton. Complex Syst. 1(2), 349–360 (1987)MATH
7.
go back to reference Cloney, T., Goles, E., Vichniac, G.Y.: The \(3x+1\) problem: a quasi cellular automaton. Complex Syst. 1(2), 349–360 (1987)MATH Cloney, T., Goles, E., Vichniac, G.Y.: The \(3x+1\) problem: a quasi cellular automaton. Complex Syst. 1(2), 349–360 (1987)MATH
8.
go back to reference Conway, J.: Unpredictable iterations. In: Number Theory Conference (1972) Conway, J.: Unpredictable iterations. In: Number Theory Conference (1972)
9.
go back to reference Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In: Exploratory Papers of Cellular Automata and Discrete Complex Systems (AUTOMATA 2015), pp. 65–73 (2015) Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In: Exploratory Papers of Cellular Automata and Discrete Complex Systems (AUTOMATA 2015), pp. 65–73 (2015)
10.
go back to reference Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65(4), 695–716 (2002)MathSciNetCrossRef Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65(4), 695–716 (2002)MathSciNetCrossRef
12.
go back to reference Jakobsen, S.K., Simonsen, J.G.: Liouville numbers and the computational complexity of changing bases. In: Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) Beyond the Horizon of Computability. CiE 2020. Lecture Notes in Computer Science, vol. 12098, pp. 50–62. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51466-2_5 Jakobsen, S.K., Simonsen, J.G.: Liouville numbers and the computational complexity of changing bases. In: Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) Beyond the Horizon of Computability. CiE 2020. Lecture Notes in Computer Science, vol. 12098, pp. 50–62. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-51466-2_​5
16.
go back to reference Kurtz, S.A., Simon, J.: The undecidability of the generalized Collatz Problem. In: Cai, J.Y., Cooper, S.B., Zhu, H. (eds.) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol. 4484, pp. 542–553. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-6_49 Kurtz, S.A., Simon, J.: The undecidability of the generalized Collatz Problem. In: Cai, J.Y., Cooper, S.B., Zhu, H. (eds.) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol. 4484, pp. 542–553. Springer, Heidelberg (2007). https://​doi.​org/​10.​1007/​978-3-540-72504-6_​49
18.
go back to reference Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall Inc., Engelwood Cliffs (1967)MATH Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall Inc., Engelwood Cliffs (1967)MATH
20.
21.
go back to reference Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical systems. Nonlinearity 4(2), 199 (1991)MathSciNetCrossRef Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical systems. Nonlinearity 4(2), 199 (1991)MathSciNetCrossRef
22.
go back to reference Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, Oxford (2011) Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, Oxford (2011)
23.
go back to reference Rozier, O.: Parity sequences of the 3x+1 map on the 2-adic integers and Euclidean embedding. Integers 19, A8 (2019)MathSciNetMATH Rozier, O.: Parity sequences of the 3x+1 map on the 2-adic integers and Euclidean embedding. Integers 19, A8 (2019)MathSciNetMATH
24.
go back to reference Shallit, J., Wilson, D.A.: The “3x + 1” problem and finite automata. Bull. EATCS 46, 182–185 (1992)MATH Shallit, J., Wilson, D.A.: The “3x + 1” problem and finite automata. Bull. EATCS 46, 182–185 (1992)MATH
27.
go back to reference Vollmar, R.: On cellular automata with a finite number of state changes. In: Knödel, W., Schneider, H.J. (eds.) Parallel Processes and Related Automata/Parallele Prozesse und damit zusammenhängende Automaten. Computing Supplementum, vol. 3, pp. 181–191. Springer, Vienna (1981). https://doi.org/10.1007/978-3-7091-8596-4_13 Vollmar, R.: On cellular automata with a finite number of state changes. In: Knödel, W., Schneider, H.J. (eds.) Parallel Processes and Related Automata/Parallele Prozesse und damit zusammenhängende Automaten. Computing Supplementum, vol. 3, pp. 181–191. Springer, Vienna (1981). https://​doi.​org/​10.​1007/​978-3-7091-8596-4_​13
Metadata
Title
The Collatz Process Embeds a Base Conversion Algorithm
Authors
Tristan Stérin
Damien Woods
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-61739-4_9

Premium Partner