Skip to main content
Top
Published in: Minds and Machines 1/2021

03-11-2020 | General Article

The Computational Origin of Representation

Author: Steven T. Piantadosi

Published in: Minds and Machines | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Each of our theories of mental representation provides some insight into how the mind works. However, these insights often seem incompatible, as the debates between symbolic, dynamical, emergentist, sub-symbolic, and grounded approaches to cognition attest. Mental representations—whatever they are—must share many features with each of our theories of representation, and yet there are few hypotheses about how a synthesis could be possible. Here, I develop a theory of the underpinnings of symbolic cognition that shows how sub-symbolic dynamics may give rise to higher-level cognitive representations of structures, systems of knowledge, and algorithmic processes. This theory implements a version of conceptual role semantics by positing an internal universal representation language in which learners may create mental models to capture dynamics they observe in the world. The theory formalizes one account of how truly novel conceptual content may arise, allowing us to explain how even elementary logical and computational operations may be learned from a more primitive basis. I provide an implementation that learns to represent a variety of structures, including logic, number, kinship trees, regular languages, context-free languages, domains of theories like magnetism, dominance hierarchies, list structures, quantification, and computational primitives like repetition, reversal, and recursion. This account is based on simple discrete dynamical processes that could be implemented in a variety of different physical or biological systems. In particular, I describe how the required dynamics can be directly implemented in a connectionist framework. The resulting theory provides an “assembly language” for cognition, where high-level theories of symbolic computation can be implemented in simple dynamics that themselves could be encoded in biologically plausible systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The LOT’s focus on structural rules is consistent with many popular cognitive architectures that use production systems (Anderson et al. 1997, 2004; Newell 1994), although the emphasis on in most LOT models is on the learning and computational level of analysis, not the implementation or architecture.
 
2
The problem is also faced by some connectionist models. For instance, Rogers and McClelland (2004), a connectionist model of semantics, builds in relations (e.g. https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figq_HTML.gif , https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figr_HTML.gif , https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figs_HTML.gif ) and observable attributes (e.g. https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figt_HTML.gif , https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figu_HTML.gif , https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figv_HTML.gif ) as activation patterns on individual nodes. There, the puzzle is: what precisely makes it the case that activation in one node means (whatever that means) https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figw_HTML.gif as opposed to https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figx_HTML.gif ?
 
3
Although this notion is controversial—see Hoffman et al. (2015) and the ensuing commentary.
 
4
Curiously, an isomorphism into real number is not the only one possible for physics—it has been argued that physical theories could be stated without numbers at all (Field 2016).
 
5
The general idea of finding a formal internal representation satisfying observed relations has close connections to model theory (Ebbinghaus and Flum 2005; Libkin 2013), as well as the solution of constraint satisfaction problems specified by logical formulas (satisfiability modulo theories) (Davis and Putnam 1960; Nieuwenhuis et al. 2006).
 
6
One simple “non-halting” combinator is https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figea_HTML.gif .
 
8
However, the general time complexity of this interface is not apparent to me at least.
 
9
Intuitively, more data is needed than in the simple Fish transitive inference cases because the https://static-content.springer.com/image/art%3A10.1007%2Fs11023-020-09540-9/MediaObjects/11023_2020_9540_Figgy_HTML.gif model does not inherently know it is dealing with a dominance hierarchy. Cases of dominance hierarchies in animal cognition may have a better chance of being innate, or at least higher prior than other alternatives.
 
10
Fodor and Pylyshyn (2014) notes there is no imagistic representation of a concept like “squareness”, or the property that all squares, a problem that Berkeley (1709) struggled with in understanding the origin and form of abstract knowledge. Anderson (1978) shows how perceptual propositional codes might account for geometric concepts like the structure of the letter “R” and how imagistic and propositional codes can made similar behavioral predictions (see also, e.g. Pylyshyn 1973).
 
11
A mathematical function, for instance mapping the world to a representation, is continuous if boundedly small changes in the input give rise to boundedly small changes in the output.
 
12
My inclination is that Putnam’s argument tells us primarily about the meaning of the word “meaning” rather than anything substantive about the nature of mental representations (for a detailed cognitive view along these lines in a different setting, see Piantadosi 2015). It is true that intuitively the meaning of a term should include something about its referent; it is not clear that our intuitions about this word tell us anything about how brains and minds actually work. In other words, Putnam may just be doing lexical semantics, a branch of psychology, here—if his point is really about the physical/biological system of the brain, it would be good to know what evidence can be presented that convincingly shows so.
 
Literature
go back to reference Abe, H., & Lee, D. (2011). Distributed coding of actual and hypothetical outcomes in the orbital and dorsolateral prefrontal cortex. Neuron, 70(4), 731–741. Abe, H., & Lee, D. (2011). Distributed coding of actual and hypothetical outcomes in the orbital and dorsolateral prefrontal cortex. Neuron, 70(4), 731–741.
go back to reference Abelson, H., & Sussman, G. (1996). Structure and interpretation of computer programs. Cambridge, MA: MIT Press.MATH Abelson, H., & Sussman, G. (1996). Structure and interpretation of computer programs. Cambridge, MA: MIT Press.MATH
go back to reference Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., & Dehaene, S. (2017). The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers. PLoS Computational Biology, 13(1), e1005273. Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., & Dehaene, S. (2017). The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers. PLoS Computational Biology, 13(1), e1005273.
go back to reference Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85(4), 249. Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85(4), 249.
go back to reference Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036. Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036.
go back to reference Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-r: A theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12(4), 439–462. Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-r: A theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12(4), 439–462.
go back to reference Aydede, M. (1997). Language of thought: The connectionist contribution. Minds and Machines, 7(1), 57–101. Aydede, M. (1997). Language of thought: The connectionist contribution. Minds and Machines, 7(1), 57–101.
go back to reference Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(04), 637–660. Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(04), 637–660.
go back to reference Barsalou, L. W. (2008). Grounded cognition. Annual Review Psychology, 59, 617–645. Barsalou, L. W. (2008). Grounded cognition. Annual Review Psychology, 59, 617–645.
go back to reference Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724. Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724.
go back to reference Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences, 110(45), 18327–18332. Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences, 110(45), 18327–18332.
go back to reference Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91–99. Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91–99.
go back to reference Bennett, C. H. (1995). Logical depth and physical complexity. The Universal Turing Machine A Half-Century Survey, pp 207–235. Bennett, C. H. (1995). Logical depth and physical complexity. The Universal Turing Machine A Half-Century Survey, pp 207–235.
go back to reference Berkeley, G. (1709). An essay towards a new theory of vision. Berkeley, G. (1709). An essay towards a new theory of vision.
go back to reference Blackburn, P., & Bos, J. (2005). Representation and inference for natural language: A first course in computational semantics. Center for the Study of Language and Information. Blackburn, P., & Bos, J. (2005). Representation and inference for natural language: A first course in computational semantics. Center for the Study of Language and Information.
go back to reference Block, N. (1987). Advertisement for a semantics for psychology. Midwest Studies in Philosophy, 10(1), 615–678. Block, N. (1987). Advertisement for a semantics for psychology. Midwest Studies in Philosophy, 10(1), 615–678.
go back to reference Block, N. (1997). Semantics, conceptual role. The Routledge Encylopedia of Philosophy. Block, N. (1997). Semantics, conceptual role. The Routledge Encylopedia of Philosophy.
go back to reference Bonawitz, E. B., van Schijndel, T. J., Friel, D., & Schulz, L. (2012). Children balance theories and evidence in exploration, explanation, and learning. Cognitive Psychology, 64(4), 215–234. Bonawitz, E. B., van Schijndel, T. J., Friel, D., & Schulz, L. (2012). Children balance theories and evidence in exploration, explanation, and learning. Cognitive Psychology, 64(4), 215–234.
go back to reference Bongard, M. M. (1970). Pattern Recognition. New York: Hayden Book Co.MATH Bongard, M. M. (1970). Pattern Recognition. New York: Hayden Book Co.MATH
go back to reference Boole, G. (1854). An investigation of the laws of thought: On which are founded the mathematical theories of logic and probabilities. London, UK: Walton and Maberly.MATH Boole, G. (1854). An investigation of the laws of thought: On which are founded the mathematical theories of logic and probabilities. London, UK: Walton and Maberly.MATH
go back to reference Bowman, S. R., Manning, C. D., & Potts, C. (2015). Tree-structured composition in neural networks without tree-structured architectures. arXiv preprint arXiv:1506.04834. Bowman, S. R., Manning, C. D., & Potts, C. (2015). Tree-structured composition in neural networks without tree-structured architectures. arXiv preprint arXiv:​1506.​04834.
go back to reference Bowman, S. R., Potts, C., & Manning, C. D. (2014a). Learning distributed word representations for natural logic reasoning. arXiv preprint arXiv:1410.4176. Bowman, S. R., Potts, C., & Manning, C. D. (2014a). Learning distributed word representations for natural logic reasoning. arXiv preprint arXiv:​1410.​4176.
go back to reference Bowman, S. R., Potts, C., & Manning, C. D. (2014b). Recursive neural networks can learn logical semantics. arXiv preprint arXiv:1406.1827. Bowman, S. R., Potts, C., & Manning, C. D. (2014b). Recursive neural networks can learn logical semantics. arXiv preprint arXiv:​1406.​1827.
go back to reference Bratko, I. (2001). Prolog programming for artificial intelligence. New York: Pearson.MATH Bratko, I. (2001). Prolog programming for artificial intelligence. New York: Pearson.MATH
go back to reference Brigandt, I. (2004). Conceptual role semantics, the theory theory, and conceptual change. Brigandt, I. (2004). Conceptual role semantics, the theory theory, and conceptual change.
go back to reference Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, 25. Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, 25.
go back to reference Cardone, F., & Hindley, J. R. (2006). History of lambda-calculus and combinatory logic. Handbook of the History of Logic, 5, 723–817. Cardone, F., & Hindley, J. R. (2006). History of lambda-calculus and combinatory logic. Handbook of the History of Logic, 5, 723–817.
go back to reference Carey, S. (1985). Conceptual change in childhood. Carey, S. (1985). Conceptual change in childhood.
go back to reference Carey, S. (2009). The Origin of Concepts. Oxford: Oxford University Press. Carey, S. (2009). The Origin of Concepts. Oxford: Oxford University Press.
go back to reference Carey, S. (2015). Why theories of concepts should not ignore the problem of acquisition. Disputation: International Journal of Philosophy., 7, 41. Carey, S. (2015). Why theories of concepts should not ignore the problem of acquisition. Disputation: International Journal of Philosophy., 7, 41.
go back to reference Chalmers, D. (1990). Why fodor and pylyshyn were wrong: The simplest refutation. In: Proceedings of the twelfth annual conference of the cognitive science society, Cambridge, mass (pp. 340–347). Chalmers, D. (1990). Why fodor and pylyshyn were wrong: The simplest refutation. In: Proceedings of the twelfth annual conference of the cognitive science society, Cambridge, mass (pp. 340–347).
go back to reference Chalmers, D. J. (1992). Subsymbolic computation and the chinese room. The symbolic and connectionist paradigms: Closing the gap, (pp. 25–48). Chalmers, D. J. (1992). Subsymbolic computation and the chinese room. The symbolic and connectionist paradigms: Closing the gap, (pp. 25–48).
go back to reference Chalmers, D. J. (1994). On implementing a computation. Minds and Machines, 4(4), 391–402. Chalmers, D. J. (1994). On implementing a computation. Minds and Machines, 4(4), 391–402.
go back to reference Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 309–333.MathSciNetMATH Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 309–333.MathSciNetMATH
go back to reference Chater, N., & Oaksford, M. (1990). Autonomy, implementation and cognitive architecture: A reply to fodor and pylyshyn. Cognition, 34(1), 93–107. Chater, N., & Oaksford, M. (1990). Autonomy, implementation and cognitive architecture: A reply to fodor and pylyshyn. Cognition, 34(1), 93–107.
go back to reference Chater, N., & Oaksford, M. (2013). Programs as causal models: Speculations on mental programs and mental representation. Cognitive Science, 37(6), 1171–1191. Chater, N., & Oaksford, M. (2013). Programs as causal models: Speculations on mental programs and mental representation. Cognitive Science, 37(6), 1171–1191.
go back to reference Chater, N., & Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in Cognitive Sciences, 7(1), 19–22. Chater, N., & Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in Cognitive Sciences, 7(1), 19–22.
go back to reference Chater, N., & Vitányi, P. (2007). Ideal learning of natural language: Positive results about learning from positive evidence. Journal of Mathematical Psychology, 51(3), 135–163.MathSciNetMATH Chater, N., & Vitányi, P. (2007). Ideal learning of natural language: Positive results about learning from positive evidence. Journal of Mathematical Psychology, 51(3), 135–163.MathSciNetMATH
go back to reference Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2(3), 113–124.MATH Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2(3), 113–124.MATH
go back to reference Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.MATH Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.MATH
go back to reference Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2), 345–363.MathSciNetMATH Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2), 345–363.MathSciNetMATH
go back to reference Church, A., & Rosser, J. B. (1936). Some properties of conversion. Transactions of the American Mathematical Society, 39(3), 472–482.MathSciNetMATH Church, A., & Rosser, J. B. (1936). Some properties of conversion. Transactions of the American Mathematical Society, 39(3), 472–482.MathSciNetMATH
go back to reference Clapp, L. (2012). Is even thought compositional? Philosophical Studies, 157(2), 299–322. Clapp, L. (2012). Is even thought compositional? Philosophical Studies, 157(2), 299–322.
go back to reference Conant, R., & Ashby, R. (1970). Every good regulator of a system must be a model of that system\(\dagger \). International Journal of Systems Science, 1(2), 89–97.MathSciNetMATH Conant, R., & Ashby, R. (1970). Every good regulator of a system must be a model of that system\(\dagger \). International Journal of Systems Science, 1(2), 89–97.MathSciNetMATH
go back to reference Costa Florêncio, C. (2002). Learning generalized quantifiers. In: M. Nissim (Ed.), Proceedings of the ESSLLI02 Student Session (pp. 31–40). University of Trento. Costa Florêncio, C. (2002). Learning generalized quantifiers. In: M. Nissim (Ed.), Proceedings of the ESSLLI02 Student Session (pp. 31–40). University of Trento.
go back to reference Craik, K. J. W. (1952). The nature of explanation (Vol. 445). CUP Archive. Craik, K. J. W. (1952). The nature of explanation (Vol. 445). CUP Archive.
go back to reference Craik, K. J. W. (1967). The nature of explanation. CUP Archive. Craik, K. J. W. (1967). The nature of explanation. CUP Archive.
go back to reference Curry, H. B., & Feys, R. (1958). Combinatory logic, volume i of studies in logic and the foundations of mathematics. Amsterdam: North-Holland.MATH Curry, H. B., & Feys, R. (1958). Combinatory logic, volume i of studies in logic and the foundations of mathematics. Amsterdam: North-Holland.MATH
go back to reference Dale, R., & Spivey, M. J. (2005). From apples and oranges to symbolic dynamics: A framework for conciliating notions of cognitive representation. Journal of Experimental & Theoretical Artificial Intelligence, 17(4), 317–342. Dale, R., & Spivey, M. J. (2005). From apples and oranges to symbolic dynamics: A framework for conciliating notions of cognitive representation. Journal of Experimental & Theoretical Artificial Intelligence, 17(4), 317–342.
go back to reference Davies, D., & Isard, S. D. (1972). Utterances as programs. Machine Intelligence, 7, 325–339. Davies, D., & Isard, S. D. (1972). Utterances as programs. Machine Intelligence, 7, 325–339.
go back to reference Davis, E. (1990). Representations of commonsense knowledge. San Mateo, CA: Morgan Kaufmann Publishers Inc. Davis, E. (1990). Representations of commonsense knowledge. San Mateo, CA: Morgan Kaufmann Publishers Inc.
go back to reference Davis, E., & Marcus, G. (2016). The scope and limits of simulation in automated reasoning. Artificial Intelligence, 233, 60–72.MathSciNetMATH Davis, E., & Marcus, G. (2016). The scope and limits of simulation in automated reasoning. Artificial Intelligence, 233, 60–72.MathSciNetMATH
go back to reference Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the ACM (JACM), 7(3), 201–215.MathSciNetMATH Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the ACM (JACM), 7(3), 201–215.MathSciNetMATH
go back to reference Depeweg, S., Rothkopf, C. A., & Jäkel, F. (2018). Solving bongard problems with a visual language and pragmatic reasoning. arXiv preprint arXiv:1804.04452. Depeweg, S., Rothkopf, C. A., & Jäkel, F. (2018). Solving bongard problems with a visual language and pragmatic reasoning. arXiv preprint arXiv:​1804.​04452.
go back to reference Ditto, W. L., Murali, K., & Sinha, S. (2008). Chaos computing: Ideas and implementations. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1865), 653–664.MathSciNetMATH Ditto, W. L., Murali, K., & Sinha, S. (2008). Chaos computing: Ideas and implementations. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1865), 653–664.MathSciNetMATH
go back to reference Drews, C. (1993). The concept and definition of dominance in animal behaviour. Behaviour, 125(3), 283–313. Drews, C. (1993). The concept and definition of dominance in animal behaviour. Behaviour, 125(3), 283–313.
go back to reference Ebbinghaus, H.-D., & Flum, J. (2005). Finite model theory. New York: Springer.MATH Ebbinghaus, H.-D., & Flum, J. (2005). Finite model theory. New York: Springer.MATH
go back to reference Edelman, S. (2008a). On the nature of minds, or: Truth and consequences. Journal of Experimental and Theoretical AI, 20, 181–196. Edelman, S. (2008a). On the nature of minds, or: Truth and consequences. Journal of Experimental and Theoretical AI, 20, 181–196.
go back to reference Edelman, S. (2008b). A swan, a pike, and a crawfish walk into a bar. Journal of Experimental & Theoretical Artificial Intelligence, 20(3), 257–264.MathSciNet Edelman, S. (2008b). A swan, a pike, and a crawfish walk into a bar. Journal of Experimental & Theoretical Artificial Intelligence, 20(3), 257–264.MathSciNet
go back to reference Edelman, S., & Intrator, N. (2003). Towards structural systematicity in distributed, statically bound visual representations. Cognitive Science, 27(1), 73–109. Edelman, S., & Intrator, N. (2003). Towards structural systematicity in distributed, statically bound visual representations. Cognitive Science, 27(1), 73–109.
go back to reference Edelman, S., & Shahbazi, R. (2012). Renewing the respect for similarity. Frontiers in Computational Neuroscience, 6, 45. Edelman, S., & Shahbazi, R. (2012). Renewing the respect for similarity. Frontiers in Computational Neuroscience, 6, 45.
go back to reference Erdogan, G., Yildirim, I., & Jacobs, R. A. (2015). From sensory signals to modality-independent conceptual representations: A probabilistic language of thought approach. PLoS Computer Biology, 11(11), e1004610. Erdogan, G., Yildirim, I., & Jacobs, R. A. (2015). From sensory signals to modality-independent conceptual representations: A probabilistic language of thought approach. PLoS Computer Biology, 11(11), e1004610.
go back to reference Falkenhainer, B., Forbus, K. D., & Gentner, D. (1986). The structure-mapping engine. Department of Computer Science, University of Illinois at Urbana-Champaign. Falkenhainer, B., Forbus, K. D., & Gentner, D. (1986). The structure-mapping engine. Department of Computer Science, University of Illinois at Urbana-Champaign.
go back to reference Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407(6804), 630–633. Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407(6804), 630–633.
go back to reference Feldman, J. (2003a). Simplicity and complexity in human concept learning. The General Psychologist, 38(1), 9–15. Feldman, J. (2003a). Simplicity and complexity in human concept learning. The General Psychologist, 38(1), 9–15.
go back to reference Feldman, J. (2003b). The simplicity principle in human concept learning. Current Directions in Psychological Science, 12(6), 227. Feldman, J. (2003b). The simplicity principle in human concept learning. Current Directions in Psychological Science, 12(6), 227.
go back to reference Feldman, J. (2012). Symbolic representation of probabilistic worlds. Cognition, 123(1), 61–83. Feldman, J. (2012). Symbolic representation of probabilistic worlds. Cognition, 123(1), 61–83.
go back to reference Field, H. (2016). Science without numbers. Oxford: Oxford University Press.MATH Field, H. (2016). Science without numbers. Oxford: Oxford University Press.MATH
go back to reference Field, H. H. (1977). Logic, meaning, and conceptual role. The Journal of Philosophy, 74(7), 379–409.MathSciNet Field, H. H. (1977). Logic, meaning, and conceptual role. The Journal of Philosophy, 74(7), 379–409.MathSciNet
go back to reference Fitch, W. T. (2014). Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews, 11(3), 329–364. Fitch, W. T. (2014). Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews, 11(3), 329–364.
go back to reference Fodor, J. (1975). The language of thought. Cambridge, MA: Harvard University Press. Fodor, J. (1975). The language of thought. Cambridge, MA: Harvard University Press.
go back to reference Fodor, J. (1997). Connectionism and the problem of systematicity (continued): Why smolensky’s solution still doesn’t work. Cognition, 62(1), 109–119. Fodor, J. (1997). Connectionism and the problem of systematicity (continued): Why smolensky’s solution still doesn’t work. Cognition, 62(1), 109–119.
go back to reference Fodor, J. (2008). LOT 2: The language of thought revisited. Oxford: Oxford University Press. Fodor, J. (2008). LOT 2: The language of thought revisited. Oxford: Oxford University Press.
go back to reference Fodor, J., & Lepore, E. (1992). Holism: A shopper’s guide. Fodor, J., & Lepore, E. (1992). Holism: A shopper’s guide.
go back to reference Fodor, J., & McLaughlin, B. P. (1990). Connectionism and the problem of systematicity: Why Smolensky’s solution doesn’t work. Cognition, 35(2), 183–204. Fodor, J., & McLaughlin, B. P. (1990). Connectionism and the problem of systematicity: Why Smolensky’s solution doesn’t work. Cognition, 35(2), 183–204.
go back to reference Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a critical analysis, Connections and symbols. Cognition, 28, 3–71. Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a critical analysis, Connections and symbols. Cognition, 28, 3–71.
go back to reference Fodor, J., & Pylyshyn, Z. W. (2014). Minds without meanings: An essay on the content of concepts. New York: MIT Press. Fodor, J., & Pylyshyn, Z. W. (2014). Minds without meanings: An essay on the content of concepts. New York: MIT Press.
go back to reference Frege, G. (1892). Über sinn und bedeutung. Wittgenstein Studien, 1, 1. Frege, G. (1892). Über sinn und bedeutung. Wittgenstein Studien, 1, 1.
go back to reference French, R. M. (2002). The computational modeling of analogy-making. Trends in Cognitive Sciences, 6(5), 200–205. French, R. M. (2002). The computational modeling of analogy-making. Trends in Cognitive Sciences, 6(5), 200–205.
go back to reference Gallistel, C., & King, A. (2009). Memory and the computational brain. New York: Wiley Blackwell. Gallistel, C., & King, A. (2009). Memory and the computational brain. New York: Wiley Blackwell.
go back to reference Gallistel, C. R. (1998). Symbolic processes in the brain: The case of insect navigation. An Invitation to Cognitive Science, 4, 1–51. Gallistel, C. R. (1998). Symbolic processes in the brain: The case of insect navigation. An Invitation to Cognitive Science, 4, 1–51.
go back to reference Gardner, M., Talukdar, P., & Mitchell, T. (2015). Combining vector space embeddings with symbolic logical inference over open-domain text. In 2015 aaai spring symposium series (Vol. 6, p. 1). Gardner, M., Talukdar, P., & Mitchell, T. (2015). Combining vector space embeddings with symbolic logical inference over open-domain text. In 2015 aaai spring symposium series (Vol. 6, p. 1).
go back to reference Gayler, R. W. (2004). Vector symbolic architectures answer jackendoff’s challenges for cognitive neuroscience. arXiv preprint arXiv:cs/0412059. Gayler, R. W. (2004). Vector symbolic architectures answer jackendoff’s challenges for cognitive neuroscience. arXiv preprint arXiv:​cs/​0412059.
go back to reference Gayler, R. W. (2006). Vector symbolic architectures are a viable alternative for Jackendoff’s challenges. Behavioral and Brain Sciences, 29(01), 78–79. Gayler, R. W. (2006). Vector symbolic architectures are a viable alternative for Jackendoff’s challenges. Behavioral and Brain Sciences, 29(01), 78–79.
go back to reference Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. Cognition, 23(3), 183–209. Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. Cognition, 23(3), 183–209.
go back to reference Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170.
go back to reference Gentner, D., & Forbus, K. D. (2011). Computational models of analogy. Wiley interdisciplinary reviews: cognitive science, 2(3), 266–276. Gentner, D., & Forbus, K. D. (2011). Computational models of analogy. Wiley interdisciplinary reviews: cognitive science, 2(3), 266–276.
go back to reference Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45. Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45.
go back to reference Gentner, D., & Stevens, A. L. (1983). Mental models. Gentner, D., & Stevens, A. L. (1983). Mental models.
go back to reference Gertler, B. (2012). Understanding the internalism–externalism debate: What is the boundary of the thinker? Philosophical Perspectives, 26(1), 51–75. Gertler, B. (2012). Understanding the internalism–externalism debate: What is the boundary of the thinker? Philosophical Perspectives, 26(1), 51–75.
go back to reference Gierasimczuk, N. (2007). The problem of learning the semantics of quantifiers. In Logic, Language, and Computation, pp. 117–126. Gierasimczuk, N. (2007). The problem of learning the semantics of quantifiers. In Logic, Language, and Computation, pp. 117–126.
go back to reference Goldman, A. I. (2006). Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford: Oxford University Press. Goldman, A. I. (2006). Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford: Oxford University Press.
go back to reference Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., & Tenenbaum, J. (2008a). Church: A language for generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence, uai 2008 (pp. 220–229). Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., & Tenenbaum, J. (2008a). Church: A language for generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence, uai 2008 (pp. 220–229).
go back to reference Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T. (2008b). A Rational Analysis of Rule-Based Concept Learning. Cognitive Science, 32(1), 108–154. Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T. (2008b). A Rational Analysis of Rule-Based Concept Learning. Cognitive Science, 32(1), 108–154.
go back to reference Goodman, N. D. (1972). A simplification of combinatory logic. The Journal of Symbolic Logic, 37(02), 225–246.MathSciNetMATH Goodman, N. D. (1972). A simplification of combinatory logic. The Journal of Symbolic Logic, 37(02), 225–246.MathSciNetMATH
go back to reference Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2015). Concepts in a probabilistic language of thought. In: Margolis & Lawrence (Eds.), The conceptual mind: New directions in the study of concepts. MIT Press: New York. Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2015). Concepts in a probabilistic language of thought. In: Margolis & Lawrence (Eds.), The conceptual mind: New directions in the study of concepts. MIT Press: New York.
go back to reference Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality. Psychological Review, 118(1), 110. Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality. Psychological Review, 118(1), 110.
go back to reference Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theories. New York: Mit Press. Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theories. New York: Mit Press.
go back to reference Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, bayesian learning mechanisms, and the theory theory. Psychological Bulletin, 138(6), 1085. Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, bayesian learning mechanisms, and the theory theory. Psychological Bulletin, 138(6), 1085.
go back to reference Gordon, R. M. (1986). Folk psychology as simulation. Mind & Language, 1(2), 158–171. Gordon, R. M. (1986). Folk psychology as simulation. Mind & Language, 1(2), 158–171.
go back to reference Greenberg, M., & Harman, G. (2005). Conceptual role semantics. Greenberg, M., & Harman, G. (2005). Conceptual role semantics.
go back to reference Grefenstette, E. (2013). Towards a formal distributional semantics: Simulating logical calculi with tensors. arXiv preprint arXiv:1304.5823. Grefenstette, E. (2013). Towards a formal distributional semantics: Simulating logical calculi with tensors. arXiv preprint arXiv:​1304.​5823.
go back to reference Griffiths, T., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. (2010). Probabilistic models of cognition: exploring representations and inductive biases. Trends Cogn. Sci, 14(10.1016). Griffiths, T., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. (2010). Probabilistic models of cognition: exploring representations and inductive biases. Trends Cogn. Sci, 14(10.1016).
go back to reference Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445(7126), 429–432. Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445(7126), 429–432.
go back to reference Grover, A., Zweig, A., & Ermon, S. (2019). Graphite: Iterative generative modeling of graphs. In International conference on machine learning (pp. 2434–2444). Grover, A., Zweig, A., & Ermon, S. (2019). Graphite: Iterative generative modeling of graphs. In International conference on machine learning (pp. 2434–2444).
go back to reference Grünwald, P. D. (2007). The minimum description length principle. New York: MIT press. Grünwald, P. D. (2007). The minimum description length principle. New York: MIT press.
go back to reference Hadley, R. F. (2009). The problem of rapid variable creation. Neural Computation, 21(2), 510–532.MATH Hadley, R. F. (2009). The problem of rapid variable creation. Neural Computation, 21(2), 510–532.MATH
go back to reference Harman, G. (1987). (Non-solipsistic) Conceptual Role Semantics. In E. Lepore (Ed.), New directions in semantics. London: Academic Press. Harman, G. (1987). (Non-solipsistic) Conceptual Role Semantics. In E. Lepore (Ed.), New directions in semantics. London: Academic Press.
go back to reference Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1–3), 335–346. Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1–3), 335–346.
go back to reference Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 1569–1579. Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 1569–1579.
go back to reference Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8(6), 280–285. Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8(6), 280–285.
go back to reference Heim, I., & Kratzer, A. (1998). Semantics in generative grammar. Malden, MA: Wiley-Blackwell. Heim, I., & Kratzer, A. (1998). Semantics in generative grammar. Malden, MA: Wiley-Blackwell.
go back to reference Hindley, J., & Seldin, J. (1986). Introduction to combinators and\(\lambda \)-calculus. Cambridge, UK: Press Syndicate of the University of Cambridge. Hindley, J., & Seldin, J. (1986). Introduction to combinators and\(\lambda \)-calculus. Cambridge, UK: Press Syndicate of the University of Cambridge.
go back to reference Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic Bulletin & Review, 22(6), 1480–1506. Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic Bulletin & Review, 22(6), 1480–1506.
go back to reference Hofstadter, D. R. (1980). Gödel Escher Bach. New Society. Hofstadter, D. R. (1980). Gödel Escher Bach. New Society.
go back to reference Hofstadter, D. R. (1985). Waking up from the boolean dream. Metamagical Themas, (pp. 631–665). Hofstadter, D. R. (1985). Waking up from the boolean dream. Metamagical Themas, (pp. 631–665).
go back to reference Hofstadter, D. R. (2008). I am a strange loop. Basic books. Hofstadter, D. R. (2008). I am a strange loop. Basic books.
go back to reference Hopcroft, J., Motwani, R., & Ullman, J. (1979). Introduction to automata theory, languages, and computation (Vol. 3). Reading, MA: Addison-Wesley.MATH Hopcroft, J., Motwani, R., & Ullman, J. (1979). Introduction to automata theory, languages, and computation (Vol. 3). Reading, MA: Addison-Wesley.MATH
go back to reference Horsman, C., Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? In Proc. r. soc. a (Vol. 470, p. 20140182). Horsman, C., Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? In Proc. r. soc. a (Vol. 470, p. 20140182).
go back to reference Hsu, A., & Chater, N. (2010). The logical problem of language acquisition: A probabilistic perspective. Cognitive Science, 34(6), 972–1016. Hsu, A., & Chater, N. (2010). The logical problem of language acquisition: A probabilistic perspective. Cognitive Science, 34(6), 972–1016.
go back to reference Hsu, A., Chater, N., & Vitányi, P. (2011). The probabilistic analysis of language acquisition: Theoretical, computational, and experimental analysis. Cognition, 120(3), 380–390. Hsu, A., Chater, N., & Vitányi, P. (2011). The probabilistic analysis of language acquisition: Theoretical, computational, and experimental analysis. Cognition, 120(3), 380–390.
go back to reference Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104(3), 427. Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104(3), 427.
go back to reference Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. New York: Springer.MATH Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. New York: Springer.MATH
go back to reference Jackendoff, R. (2002). Foundation of language-brain, meaning, grammar, evolution. Oxford: Oxford University Press. Jackendoff, R. (2002). Foundation of language-brain, meaning, grammar, evolution. Oxford: Oxford University Press.
go back to reference Jacobson, P. (1999). Towards a variable-free semantics. Linguistics and Philosophy, 22(2), 117–185. Jacobson, P. (1999). Towards a variable-free semantics. Linguistics and Philosophy, 22(2), 117–185.
go back to reference Jaeger, H. (1999). From continuous dynamics to symbols. In Dynamics, synergetics, autonomous agents: Nonlinear systems approaches to cognitive psychology and cognitive science (pp. 29–48). World Scientific. Jaeger, H. (1999). From continuous dynamics to symbols. In Dynamics, synergetics, autonomous agents: Nonlinear systems approaches to cognitive psychology and cognitive science (pp. 29–48). World Scientific.
go back to reference Jay, B., & Given-Wilson, T. (2011). A combinatory account of internal structure. The Journal of Symbolic Logic, 76(03), 807–826.MathSciNetMATH Jay, B., & Given-Wilson, T. (2011). A combinatory account of internal structure. The Journal of Symbolic Logic, 76(03), 807–826.MathSciNetMATH
go back to reference Jay, B., & Kesner, D. (2006). Pure pattern calculus. In Programming languages and systems (pp. 100–114). Springer. Jay, B., & Kesner, D. (2006). Pure pattern calculus. In Programming languages and systems (pp. 100–114). Springer.
go back to reference Johnson, K. E. (2004). On the systematicity of language and thought. Journal of Philosophy, CI, 111–139. Johnson, K. E. (2004). On the systematicity of language and thought. Journal of Philosophy, CI, 111–139.
go back to reference Johnson-Laird, P. N. (1977). Procedural semantics. Cognition, 5(3), 189–214. Johnson-Laird, P. N. (1977). Procedural semantics. Cognition, 5(3), 189–214.
go back to reference Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (No 6). New York: Harvard University Press. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (No 6). New York: Harvard University Press.
go back to reference Katz, Y., Goodman, N., Kersting, K., Kemp, C., & Tenenbaum, J. (2008). Modeling semantic cognition as logical dimensionality reduction. In Proceedings of Thirtieth Annual Meeting of the Cognitive Science Society. Katz, Y., Goodman, N., Kersting, K., Kemp, C., & Tenenbaum, J. (2008). Modeling semantic cognition as logical dimensionality reduction. In Proceedings of Thirtieth Annual Meeting of the Cognitive Science Society.
go back to reference Kearns, J. T. (1969). Combinatory logic with discriminators. The Journal of Symbolic Logic, 34(4), 561–575.MathSciNetMATH Kearns, J. T. (1969). Combinatory logic with discriminators. The Journal of Symbolic Logic, 34(4), 561–575.MathSciNetMATH
go back to reference Kemp, C. (2012). Exploring the conceptual universe. Psychological Review, 119, 685–722. Kemp, C. (2012). Exploring the conceptual universe. Psychological Review, 119, 685–722.
go back to reference Kemp, C., & Tenenbaum, J. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences, 105(31), 10687. Kemp, C., & Tenenbaum, J. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences, 105(31), 10687.
go back to reference Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006). Learning systems of concepts with an infinite relational model. In Aaai (Vol. 3, p. 5). Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006). Learning systems of concepts with an infinite relational model. In Aaai (Vol. 3, p. 5).
go back to reference Kemp, C., Tenenbaum, J. B., Niyogi, S., & Griffiths, T. L. (2010). A probabilistic model of theory formation. Cognition, 114(2), 165–196. Kemp, C., Tenenbaum, J. B., Niyogi, S., & Griffiths, T. L. (2010). A probabilistic model of theory formation. Cognition, 114(2), 165–196.
go back to reference Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. In International conference on machine learning (icml). Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., & Zemel, R. (2018). Neural relational inference for interacting systems. In International conference on machine learning (icml).
go back to reference Kipf, T., et al. (2020). Deep learning with graph-structured representations. Kipf, T., et al. (2020). Deep learning with graph-structured representations.
go back to reference Koopman, P., Plasmeijer, R., & Jansen, J. M. (2014). Church encoding of data types considered harmful for implementations. Koopman, P., Plasmeijer, R., & Jansen, J. M. (2014). Church encoding of data types considered harmful for implementations.
go back to reference Kushnir, T., & Xu, F. (2012). Rational constructivism in cognitive development (Vol. 43). New York: Academic Press. Kushnir, T., & Xu, F. (2012). Rational constructivism in cognitive development (Vol. 43). New York: Academic Press.
go back to reference Kwiatkowski, T., Goldwater, S., Zettlemoyer, L., & Steedman, M. (2012). A probabilistic model of syntactic and semantic acquisition from child-directed utterances and their meanings. In: Proceedings of the 13th conference of the european chapter of the association for computational linguistics (pp. 234–244). Kwiatkowski, T., Goldwater, S., Zettlemoyer, L., & Steedman, M. (2012). A probabilistic model of syntactic and semantic acquisition from child-directed utterances and their meanings. In: Proceedings of the 13th conference of the european chapter of the association for computational linguistics (pp. 234–244).
go back to reference Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., & Steedman, M. (2010). Inducing probabilistic ccg grammars from logical form with higher-order unification. In: Proceedings of the 2010 conference on empirical methods in natural language processing (pp. 1223–1233). Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., & Steedman, M. (2010). Inducing probabilistic ccg grammars from logical form with higher-order unification. In: Proceedings of the 2010 conference on empirical methods in natural language processing (pp. 1223–1233).
go back to reference Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332–1338.MathSciNetMATH Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332–1338.MathSciNetMATH
go back to reference Laurence, S., & Margolis, E. (2002). Radical concept nativism. Cognition, 86(1), 25–55. Laurence, S., & Margolis, E. (2002). Radical concept nativism. Cognition, 86(1), 25–55.
go back to reference Lee, M. D. (2010). Emergent and structured cognition in bayesian models: comment on griffiths et al and mcclelland et al. Update, 14, 8. Lee, M. D. (2010). Emergent and structured cognition in bayesian models: comment on griffiths et al and mcclelland et al. Update, 14, 8.
go back to reference Levin, L. A. (1973). Universal sequential search problems. Problemy Peredachi Informatsii, 9(3), 115–116.MathSciNetMATH Levin, L. A. (1973). Universal sequential search problems. Problemy Peredachi Informatsii, 9(3), 115–116.MathSciNetMATH
go back to reference Levin, L. A. (1984). Randomness conservation inequalities; information and independence in mathematical theories. Information and Control, 61(1), 15–37.MathSciNetMATH Levin, L. A. (1984). Randomness conservation inequalities; information and independence in mathematical theories. Information and Control, 61(1), 15–37.MathSciNetMATH
go back to reference Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 17(1), 1334–1373.MathSciNetMATH Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 17(1), 1334–1373.MathSciNetMATH
go back to reference Li, F.-F., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine intelligence, 28(4), 594–611. Li, F.-F., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine intelligence, 28(4), 594–611.
go back to reference Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications. New York: Springer.MATH Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications. New York: Springer.MATH
go back to reference Liang, P., Jordan, M., & Klein, D. (2010). Learning Programs: A Hierarchical Bayesian Approach. In Proceedings of the 27th International Conference on Machine Learning. Liang, P., Jordan, M., & Klein, D. (2010). Learning Programs: A Hierarchical Bayesian Approach. In Proceedings of the 27th International Conference on Machine Learning.
go back to reference Libkin, L. (2013). Elements of finite model theory. New York: Springer.MATH Libkin, L. (2013). Elements of finite model theory. New York: Springer.MATH
go back to reference Lind, D., & Marcus, B. (1995). An introduction to symbolic dynamics and coding. Cambridge: Cambridge University Press.MATH Lind, D., & Marcus, B. (1995). An introduction to symbolic dynamics and coding. Cambridge: Cambridge University Press.MATH
go back to reference Loar, B. (1982). Conceptual role and truth-conditions: comments on harman’s paper:”conceptual role semantics”. Notre Dame Journal of Formal Logic, 23(3), 272–283.MathSciNet Loar, B. (1982). Conceptual role and truth-conditions: comments on harman’s paper:”conceptual role semantics”. Notre Dame Journal of Formal Logic, 23(3), 272–283.MathSciNet
go back to reference Lu, Z., & Bassett, D. S. (2018). A parsimonious dynamical model for structural learning in the human brain. arXiv preprint arXiv:1807.05214. Lu, Z., & Bassett, D. S. (2018). A parsimonious dynamical model for structural learning in the human brain. arXiv preprint arXiv:​1807.​05214.
go back to reference Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30(4), 420–429. Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30(4), 420–429.
go back to reference Marcus, G. F. (2003). The algebraic mind: Integrating connectionism and cognitive science. New York: MIT press. Marcus, G. F. (2003). The algebraic mind: Integrating connectionism and cognitive science. New York: MIT press.
go back to reference Margolis, E., & Laurence, S. (1999). Concepts: Core readings. New York: The MIT Press. Margolis, E., & Laurence, S. (1999). Concepts: Core readings. New York: The MIT Press.
go back to reference Markman, E. M. (1991). Categorization and naming in children: Problems of induction. New York: Mit Press. Markman, E. M. (1991). Categorization and naming in children: Problems of induction. New York: Mit Press.
go back to reference Marr, D. (1982). Vision: A computational investigation into the Human Representation and Processing of Visual Information. London: W.H. Freeman & Company. Marr, D. (1982). Vision: A computational investigation into the Human Representation and Processing of Visual Information. London: W.H. Freeman & Company.
go back to reference Marr, D., & Poggio, T. (1976). From understanding computation to understanding neural circuitry. MIT AI Memo 357. Marr, D., & Poggio, T. (1976). From understanding computation to understanding neural circuitry. MIT AI Memo 357.
go back to reference Martin, A. E., & Doumas, L. A. (2018). Predicate learning in neural systems: Discovering latent generative structures. arXiv preprint arXiv:1810.01127. Martin, A. E., & Doumas, L. A. (2018). Predicate learning in neural systems: Discovering latent generative structures. arXiv preprint arXiv:​1810.​01127.
go back to reference Martinho, A., & Kacelnik, A. (2016). Ducklings imprint on the relational concept of “same or different”. Science, 353(6296), 286–288. Martinho, A., & Kacelnik, A. (2016). Ducklings imprint on the relational concept of “same or different”. Science, 353(6296), 286–288.
go back to reference McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14(8), 348–356. McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14(8), 348–356.
go back to reference Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception. New York: Belknap Press. Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception. New York: Belknap Press.
go back to reference Mody, S., & Carey, S. (2016). The emergence of reasoning by the disjunctive syllogism in early childhood. Cognition, 154, 40–48. Mody, S., & Carey, S. (2016). The emergence of reasoning by the disjunctive syllogism in early childhood. Cognition, 154, 40–48.
go back to reference Montague, R. (1973). The Proper Treatment of Quantification in Ordinary English. Formal. Semantics, (pp 17–34). Montague, R. (1973). The Proper Treatment of Quantification in Ordinary English. Formal. Semantics, (pp 17–34).
go back to reference Mostowski, M. (1998). Computational semantics for monadic quantifiers. Journal of Applied Nonclassical Logics, 8, 107–122.MathSciNetMATH Mostowski, M. (1998). Computational semantics for monadic quantifiers. Journal of Applied Nonclassical Logics, 8, 107–122.MathSciNetMATH
go back to reference Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92(3), 289. Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92(3), 289.
go back to reference Neelakantan, A., Roth, B., & McCallum, A. (2015). Compositional vector space models for knowledge base inference. In 2015 aaai spring symposium series. Neelakantan, A., Roth, B., & McCallum, A. (2015). Compositional vector space models for knowledge base inference. In 2015 aaai spring symposium series.
go back to reference Newell, A. (1994). Unified theories of cognition. Cambridge, MA: Harvard University Press. Newell, A. (1994). Unified theories of cognition. Cambridge, MA: Harvard University Press.
go back to reference Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.MathSciNet Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.MathSciNet
go back to reference Nickel, M., & Kiela, D. (2017). Poincaré embeddings for learning hierarchical representations. In Advances in Neural Information Processing Systems (pp. 6338–6347). Nickel, M., & Kiela, D. (2017). Poincaré embeddings for learning hierarchical representations. In Advances in Neural Information Processing Systems (pp. 6338–6347).
go back to reference Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving sat and sat modulo theories: From an abstract davis-putnam-logemann-loveland procedure to dpll (t). Journal of the ACM (JACM), 53(6), 937–977.MathSciNetMATH Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving sat and sat modulo theories: From an abstract davis-putnam-logemann-loveland procedure to dpll (t). Journal of the ACM (JACM), 53(6), 937–977.MathSciNetMATH
go back to reference Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge: Cambridge University Press. Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge: Cambridge University Press.
go back to reference Okasaki, C. (1999). Purely functional data structures. Cambridge: Cambridge University Press.MATH Okasaki, C. (1999). Purely functional data structures. Cambridge: Cambridge University Press.MATH
go back to reference Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category-based induction. Psychological Review, 97(2), 185. Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category-based induction. Psychological Review, 97(2), 185.
go back to reference Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31(02), 109–130. Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31(02), 109–130.
go back to reference Pierce, B. C. (2002). Types and programming languages. New York: MIT press.MATH Pierce, B. C. (2002). Types and programming languages. New York: MIT press.MATH
go back to reference Plate, T. A. (1995). Holographic reduced representations. IEEE transactions on Neural Networks, 6(3), 623–641. Plate, T. A. (1995). Holographic reduced representations. IEEE transactions on Neural Networks, 6(3), 623–641.
go back to reference Pollack, J. B. (1989). Implications of recursive distributed representations. In Advances in neural information processing systems (pp. 527–536). Pollack, J. B. (1989). Implications of recursive distributed representations. In Advances in neural information processing systems (pp. 527–536).
go back to reference Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1), 77–105. Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1), 77–105.
go back to reference Putnam, H. (1975). The meaing of meaning. In Philosophical Papers, Volume II: Mind, Language, and Reality. Cambridge: Cambridge University Press. Putnam, H. (1975). The meaing of meaning. In Philosophical Papers, Volume II: Mind, Language, and Reality. Cambridge: Cambridge University Press.
go back to reference Putnam, H. (1988). Representation and reality (Vol. 454). Cambridge: Cambridge Univ Press. Putnam, H. (1988). Representation and reality (Vol. 454). Cambridge: Cambridge Univ Press.
go back to reference Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80(1), 1. Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80(1), 1.
go back to reference Quine, W. V. (1951). Main trends in recent philosophy: Two dogmas of empiricism. The philosophical review (pp. 20–43). Quine, W. V. (1951). Main trends in recent philosophy: Two dogmas of empiricism. The philosophical review (pp. 20–43).
go back to reference Rips, L., Asmuth, J., & Bloomfield, A. (2006). Giving the boot to the bootstrap: How not to learn the natural numbers. Cognition, 101, 51–60. Rips, L., Asmuth, J., & Bloomfield, A. (2006). Giving the boot to the bootstrap: How not to learn the natural numbers. Cognition, 101, 51–60.
go back to reference Rips, L., Asmuth, J., & Bloomfield, A. (2008a). Do children learn the integers by induction? Cognition, 106, 940–951. Rips, L., Asmuth, J., & Bloomfield, A. (2008a). Do children learn the integers by induction? Cognition, 106, 940–951.
go back to reference Rips, L., Asmuth, J., & Bloomfield, A. (2013). Can statistical learning bootstrap the integers? Cognition, 128(3), 320–330. Rips, L., Asmuth, J., & Bloomfield, A. (2013). Can statistical learning bootstrap the integers? Cognition, 128(3), 320–330.
go back to reference Rips, L., Bloomfield, A., & Asmuth, J. (2008b). From numerical concepts to concepts of number. Behavioral and Brain Sciences, 31, 623–642. Rips, L., Bloomfield, A., & Asmuth, J. (2008b). From numerical concepts to concepts of number. Behavioral and Brain Sciences, 31, 623–642.
go back to reference Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning and Verbal Behavior, 14(6), 665–681. Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning and Verbal Behavior, 14(6), 665–681.
go back to reference Rips, L. J. (1989). The psychology of knights and knaves. Cognition, 31(2), 85–116. Rips, L. J. (1989). The psychology of knights and knaves. Cognition, 31(2), 85–116.
go back to reference Rips, L. J. (1994). The psychology of proof: Deductive reasoning in human thinking. New York: Mit Press.MATH Rips, L. J. (1994). The psychology of proof: Deductive reasoning in human thinking. New York: Mit Press.MATH
go back to reference Rocktäschel, T., Bosnjak, M., Singh, S., & Riedel, S. (2014). Low-dimensional embeddings of logic. In Acl workshop on semantic parsing. Rocktäschel, T., Bosnjak, M., Singh, S., & Riedel, S. (2014). Low-dimensional embeddings of logic. In Acl workshop on semantic parsing.
go back to reference Rogers, T., & McClelland, J. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press. Rogers, T., & McClelland, J. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.
go back to reference Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., & Figueira, S. (2018). Bayesian validation of grammar productions for the language of thought. PLoS One, 2, 311. Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., & Figueira, S. (2018). Bayesian validation of grammar productions for the language of thought. PLoS One, 2, 311.
go back to reference Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., & Figueria, S. (2017). Bayesian selection of grammar productions for the language of thought. bioRxiv, 141358. Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., & Figueria, S. (2017). Bayesian selection of grammar productions for the language of thought. bioRxiv, 141358.
go back to reference Rothe, A., Lake, B. M., & Gureckis, T. (2017). Question asking as program generation. In Advances in neural information processing systems (pp. 1046–1055). Rothe, A., Lake, B. M., & Gureckis, T. (2017). Question asking as program generation. In Advances in neural information processing systems (pp. 1046–1055).
go back to reference Rule, J. S., Tenenbaum, J. B., & Piantadosi, S. T. (2020). The child as hacker. Trends in Cognitive Sciences. Rule, J. S., Tenenbaum, J. B., & Piantadosi, S. T. (2020). The child as hacker. Trends in Cognitive Sciences.
go back to reference Rumelhart, D., & McClelland, J. (1986). Parallel distributed processing. Cambridge, MA: MIT Press. Rumelhart, D., & McClelland, J. (1986). Parallel distributed processing. Cambridge, MA: MIT Press.
go back to reference Runge, C. (1901). Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten. Zeitschrift für Mathematik und Physik, 46(224–243), 20.MATH Runge, C. (1901). Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten. Zeitschrift für Mathematik und Physik, 46(224–243), 20.MATH
go back to reference Salakhutdinov, R., Tenenbaum, J., & Torralba, A. (2010). One-shot learning with a hierarchical nonparametric bayesian model. Salakhutdinov, R., Tenenbaum, J., & Torralba, A. (2010). One-shot learning with a hierarchical nonparametric bayesian model.
go back to reference Schmidhuber, J. (1995). Discovering solutions with low kolmogorov complexity and high generalization capability. In Machine learning proceedings 1995 (pp. 488–496). Elsevier. Schmidhuber, J. (1995). Discovering solutions with low kolmogorov complexity and high generalization capability. In Machine learning proceedings 1995 (pp. 488–496). Elsevier.
go back to reference Schmidhuber, J. (2002). The speed prior: a new simplicity measure yielding near-optimal computable predictions. In International conference on computational learning theory (pp. 216–228). Schmidhuber, J. (2002). The speed prior: a new simplicity measure yielding near-optimal computable predictions. In International conference on computational learning theory (pp. 216–228).
go back to reference Schmidhuber, J. (2007). Gödel machines: Fully self-referential optimal universal self-improvers. In Artificial general intelligence (pp. 199–226). Springer. Schmidhuber, J. (2007). Gödel machines: Fully self-referential optimal universal self-improvers. In Artificial general intelligence (pp. 199–226). Springer.
go back to reference Scholten, D. (2010). A primer for Conant and Ashby’s good-regulator theorem [Unpublished]. Scholten, D. (2010). A primer for Conant and Ashby’s good-regulator theorem [Unpublished].
go back to reference Scholten, D. L. (2011). Every good key must be a model of the lock it opens. Scholten, D. L. (2011). Every good key must be a model of the lock it opens.
go back to reference Schönfinkel, M. (1967). On the building blocks of mathematical logic. From Frege to Gödel (pp 355–366). Schönfinkel, M. (1967). On the building blocks of mathematical logic. From Frege to Gödel (pp 355–366).
go back to reference Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(03), 417–424. Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(03), 417–424.
go back to reference Searle, J. R. (1990). Is the brain a digital computer? In Proceedings and addresses of the american philosophical association (Vol. 64, pp. 21–37). Searle, J. R. (1990). Is the brain a digital computer? In Proceedings and addresses of the american philosophical association (Vol. 64, pp. 21–37).
go back to reference Sellars, W. (1963). Science, perception, and reality. Sellars, W. (1963). Science, perception, and reality.
go back to reference Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and simplicity. Journal of Statistical Physics, 104(3–4), 817–879.MathSciNetMATH Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and simplicity. Journal of Statistical Physics, 104(3–4), 817–879.MathSciNetMATH
go back to reference Shastri, L., Ajjanagadde, V., Bonatti, L., & Lange, T. (1996). From simple associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic bindings using temporal synchrony. Behavioral and Brain Sciences, 19(2), 326–337. Shastri, L., Ajjanagadde, V., Bonatti, L., & Lange, T. (1996). From simple associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic bindings using temporal synchrony. Behavioral and Brain Sciences, 19(2), 326–337.
go back to reference Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology, 1(1), 1–17. Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology, 1(1), 1–17.
go back to reference Shipley, E. F. (1993). Categories, hierarchies, and induction. The Psychology of Learning and Motivation, 30, 265–301. Shipley, E. F. (1993). Categories, hierarchies, and induction. The Psychology of Learning and Motivation, 30, 265–301.
go back to reference Sinha, S., & Ditto, W. L. (1998). Dynamics based computation. Physical Review Letters, 81(10), 2156. Sinha, S., & Ditto, W. L. (1998). Dynamics based computation. Physical Review Letters, 81(10), 2156.
go back to reference Siskind, J. (1996). A Computational Study of Cross-Situational Techniques for Learning Word-to-Meaning Mappings. Cognition, 61, 31–91. Siskind, J. (1996). A Computational Study of Cross-Situational Techniques for Learning Word-to-Meaning Mappings. Cognition, 61, 31–91.
go back to reference Sloutsky, V. M. (2010). From perceptual categories to concepts: What develops? Cognitive Science, 34(7), 1244–1286. Sloutsky, V. M. (2010). From perceptual categories to concepts: What develops? Cognitive Science, 34(7), 1244–1286.
go back to reference Smolensky, P. (1988). The constituent structure of connectionist mental states: A reply to fodor and pylyshyn. The Southern Journal of Philosophy, 26(S1), 137–161. Smolensky, P. (1988). The constituent structure of connectionist mental states: A reply to fodor and pylyshyn. The Southern Journal of Philosophy, 26(S1), 137–161.
go back to reference Smolensky, P. (1989). Connectionism and constituent structure. Connectionism in perspective (pp. 3–24). Smolensky, P. (1989). Connectionism and constituent structure. Connectionism in perspective (pp. 3–24).
go back to reference Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46(1), 159–216.MathSciNetMATH Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46(1), 159–216.MathSciNetMATH
go back to reference Smolensky, P. (2012). Subsymbolic computation theory for the human intuitive processor. In Conference on computability in europe (pp. 675–685). Smolensky, P. (2012). Subsymbolic computation theory for the human intuitive processor. In Conference on computability in europe (pp. 675–685).
go back to reference Smolensky, P., Lee, M., He, X., Yih, W.-t., Gao, J., & Deng, L. (2016). Basic reasoning with tensor product representations. arXiv preprint arXiv:1601.02745. Smolensky, P., Lee, M., He, X., Yih, W.-t., Gao, J., & Deng, L. (2016). Basic reasoning with tensor product representations. arXiv preprint arXiv:​1601.​02745.
go back to reference Smolensky, P., & Legendre, G. (2006). The Harmonic Mind. Cambridge, MA: MIT Press.MATH Smolensky, P., & Legendre, G. (2006). The Harmonic Mind. Cambridge, MA: MIT Press.MATH
go back to reference Solomonoff, R. J. (1964a). A formal theory of inductive inference. Part I. Information and Control, 7(1), 1–22.MathSciNetMATH Solomonoff, R. J. (1964a). A formal theory of inductive inference. Part I. Information and Control, 7(1), 1–22.MathSciNetMATH
go back to reference Solomonoff, R. J. (1964b). A formal theory of inductive inference: Part II. Information and Control, 7(2), 224–254.MathSciNetMATH Solomonoff, R. J. (1964b). A formal theory of inductive inference: Part II. Information and Control, 7(2), 224–254.MathSciNetMATH
go back to reference Spivey, M. (2008). The continuity of mind. Oxford: Oxford University Press. Spivey, M. (2008). The continuity of mind. Oxford: Oxford University Press.
go back to reference Stay, M. (2005). Very simple chaitin machines for concrete ait. Fundamenta Informaticae, 68(3), 231–247.MathSciNetMATH Stay, M. (2005). Very simple chaitin machines for concrete ait. Fundamenta Informaticae, 68(3), 231–247.MathSciNetMATH
go back to reference Steedman, M. (2001). The syntactic process. Cambridge MA: MIT Press. Steedman, M. (2001). The syntactic process. Cambridge MA: MIT Press.
go back to reference Steedman, M. (2002). Plans, affordances, and combinatory grammar. Linguistics and Philosophy, 25(5–6), 723–753. Steedman, M. (2002). Plans, affordances, and combinatory grammar. Linguistics and Philosophy, 25(5–6), 723–753.
go back to reference Stone, T., & Davies, M. (1996). The mental simulation debate: A progress report. Theories of theories of mind (pp. 119–137). Stone, T., & Davies, M. (1996). The mental simulation debate: A progress report. Theories of theories of mind (pp. 119–137).
go back to reference Tabor, W. (2009). A dynamical systems perspective on the relationship between symbolic and non-symbolic computation. Cognitive Neurodynamics, 3(4), 415–427. Tabor, W. (2009). A dynamical systems perspective on the relationship between symbolic and non-symbolic computation. Cognitive Neurodynamics, 3(4), 415–427.
go back to reference Tabor, W. (2011). Recursion and recursion-like structure in ensembles of neural elements. In Unifying themes in complex systems. proceedings of the viii international conference on complex systems (pp. 1494–1508). Tabor, W. (2011). Recursion and recursion-like structure in ensembles of neural elements. In Unifying themes in complex systems. proceedings of the viii international conference on complex systems (pp. 1494–1508).
go back to reference Tabor, W., Juliano, C., & Tanenhaus, M. K. (1997). Parsing in a dynamical system: An attractor-based account of the interaction of lexical and structural constraints in sentence processing. Language and Cognitive Processes, 12(2–3), 211–271. Tabor, W., Juliano, C., & Tanenhaus, M. K. (1997). Parsing in a dynamical system: An attractor-based account of the interaction of lexical and structural constraints in sentence processing. Language and Cognitive Processes, 12(2–3), 211–271.
go back to reference Tenenbaum, J., Kemp, C., Griffiths, T., & Goodman, N. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.MathSciNetMATH Tenenbaum, J., Kemp, C., Griffiths, T., & Goodman, N. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.MathSciNetMATH
go back to reference Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309–318. Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309–318.
go back to reference Tenenbaum, J. B., Kemp, C., & Shafto, P. (2007). Theory-based bayesian models of inductive reasoning. Inductive reasoning: Experimental, developmental, and computational approaches (pp. 167–204). Tenenbaum, J. B., Kemp, C., & Shafto, P. (2007). Theory-based bayesian models of inductive reasoning. Inductive reasoning: Experimental, developmental, and computational approaches (pp. 167–204).
go back to reference Tiede, H. (1999). Identifiability in the limit of context-free generalized quantifiers. Journal of Language and Computation, 1(1), 93–102. Tiede, H. (1999). Identifiability in the limit of context-free generalized quantifiers. Journal of Language and Computation, 1(1), 93–102.
go back to reference Touretzky, D. S. (1990). Boltzcons: Dynamic symbol structures in a connectionist network. Artificial Intelligence, 46(1), 5–46.MathSciNet Touretzky, D. S. (1990). Boltzcons: Dynamic symbol structures in a connectionist network. Artificial Intelligence, 46(1), 5–46.MathSciNet
go back to reference Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., & Blunsom, P. (2018). Neural arithmetic logic units. In Advances in neural information processing systems (pp. 8035–8044). Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., & Blunsom, P. (2018). Neural arithmetic logic units. In Advances in neural information processing systems (pp. 8035–8044).
go back to reference Tromp, J. (2007). Binary lambda calculus and combinatory logic. Randomness and Complexity, from Leibniz to Chaitin, 237–260. Tromp, J. (2007). Binary lambda calculus and combinatory logic. Randomness and Complexity, from Leibniz to Chaitin, 237–260.
go back to reference Turing, A. M. (1937). Computability and \(\lambda \)-definability. The Journal of Symbolic Logic, 2(04), 153–163.MATH Turing, A. M. (1937). Computability and \(\lambda \)-definability. The Journal of Symbolic Logic, 2(04), 153–163.MATH
go back to reference Ullman, T., Goodman, N., & Tenenbaum, J. (2012). Theory learning as stochastic search in the language of thought. Cognitive Development. Ullman, T., Goodman, N., & Tenenbaum, J. (2012). Theory learning as stochastic search in the language of thought. Cognitive Development.
go back to reference van Benthem, J. (1984). Semantic automata. In J. Groenendijk, D. d. Jongh, & M. Stokhof (Eds.), Studies in discourse representation theory and the theory of generalized quantifiers. Dordrecht, The Netherlands: Foris Publications Holland. van Benthem, J. (1984). Semantic automata. In J. Groenendijk, D. d. Jongh, & M. Stokhof (Eds.), Studies in discourse representation theory and the theory of generalized quantifiers. Dordrecht, The Netherlands: Foris Publications Holland.
go back to reference Van Der Velde, F., & De Kamps, M. (2006). Neural blackboard architectures of combinatorial structures in cognition. Behavioral and Brain Sciences, 29(01), 37–70. Van Der Velde, F., & De Kamps, M. (2006). Neural blackboard architectures of combinatorial structures in cognition. Behavioral and Brain Sciences, 29(01), 37–70.
go back to reference Van Gelder, T. (1990). Compositionality: A connectionist variation on a classical theme. Cognitive Science, 14(3), 355–384. Van Gelder, T. (1990). Compositionality: A connectionist variation on a classical theme. Cognitive Science, 14(3), 355–384.
go back to reference Van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7), 345–381. Van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7), 345–381.
go back to reference Van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and brain sciences, 21(05), 615–628. Van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and brain sciences, 21(05), 615–628.
go back to reference Wagner, E. G. (1969). Uniformly reflexive structures: on the nature of gödelizations and relative computability. Transactions of the American Mathematical Society, 144, 1–41.MathSciNetMATH Wagner, E. G. (1969). Uniformly reflexive structures: on the nature of gödelizations and relative computability. Transactions of the American Mathematical Society, 144, 1–41.MathSciNetMATH
go back to reference Watter, M., Springenberg, J., Boedecker, J., & Riedmiller, M. (2015). Embed to control: A locally linear latent dynamics model for control from raw images. In Advances in neural information processing systems (pp. 2746–2754). Watter, M., Springenberg, J., Boedecker, J., & Riedmiller, M. (2015). Embed to control: A locally linear latent dynamics model for control from raw images. In Advances in neural information processing systems (pp. 2746–2754).
go back to reference Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43(1), 337–375. Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43(1), 337–375.
go back to reference Whiting, D. (2006). Conceptual role semantics. Whiting, D. (2006). Conceptual role semantics.
go back to reference Wisniewski, E. J., & Medin, D. L. (1994). On the interaction of theory and data in concept learning. Cognitive Science, 18(2), 221–281. Wisniewski, E. J., & Medin, D. L. (1994). On the interaction of theory and data in concept learning. Cognitive Science, 18(2), 221–281.
go back to reference Wolfram, S. (2002). A new kind of science (Vol. 1). Wolfram Media Champaign, IL. Wolfram, S. (2002). A new kind of science (Vol. 1). Wolfram Media Champaign, IL.
go back to reference Wong, Y. W., & Mooney, R. J. (2007). Learning synchronous grammars for semantic parsing with lambda calculus. In Annual meeting-association for computational linguistics (Vol. 45, p. 960). Wong, Y. W., & Mooney, R. J. (2007). Learning synchronous grammars for semantic parsing with lambda calculus. In Annual meeting-association for computational linguistics (Vol. 45, p. 960).
go back to reference Woods, W. A. (1968). Procedural semantics for a question-answering machine. In Proceedings of the December 9-11, 1968, fall joint computer conference, part I (pp. 457–471). Woods, W. A. (1968). Procedural semantics for a question-answering machine. In Proceedings of the December 9-11, 1968, fall joint computer conference, part I (pp. 457–471).
go back to reference Woods, W. A. (1981). Procedural semantics as a theory of meaning. (Tech. Rep.). DTIC Document. Woods, W. A. (1981). Procedural semantics as a theory of meaning. (Tech. Rep.). DTIC Document.
go back to reference Xu, F. (2019). Towards a rational constructivist theory of cognitive development. Psychological Review, 126(6), 841. Xu, F. (2019). Towards a rational constructivist theory of cognitive development. Psychological Review, 126(6), 841.
go back to reference Xu, F., & Tenenbaum, J. (2007). Word learning as Bayesian inference. Psychological Review, 114(2), 245–272. Xu, F., & Tenenbaum, J. (2007). Word learning as Bayesian inference. Psychological Review, 114(2), 245–272.
go back to reference Yildirim, I., & Jacobs, R. A. (2012). A rational analysis of the acquisition of multisensory representations. Cognitive Science, 36(2), 305–332. Yildirim, I., & Jacobs, R. A. (2012). A rational analysis of the acquisition of multisensory representations. Cognitive Science, 36(2), 305–332.
go back to reference Yildirim, I., & Jacobs, R. A. (2013). Transfer of object category knowledge across visual and haptic modalities: Experimental and computational studies. Cognition, 126(2), 135–148. Yildirim, I., & Jacobs, R. A. (2013). Transfer of object category knowledge across visual and haptic modalities: Experimental and computational studies. Cognition, 126(2), 135–148.
go back to reference Yildirim, I., & Jacobs, R. A. (2014). Learning multisensory representations for auditory-visual transfer of sequence category knowledge: a probabilistic language of thought approach. Psychonomic bulletin & review (pp. 1–14). Yildirim, I., & Jacobs, R. A. (2014). Learning multisensory representations for auditory-visual transfer of sequence category knowledge: a probabilistic language of thought approach. Psychonomic bulletin & review (pp. 1–14).
go back to reference Zettlemoyer, L. S., & Collins, M. (2005). Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars. In UAI (pp. 658–666). Zettlemoyer, L. S., & Collins, M. (2005). Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars. In UAI (pp. 658–666).
go back to reference Zhang, Z., Cui, P., & Zhu, W. (2020). Deep learning on graphs: A survey. IEEE Transactions on Knowledge and Data Engineering. Zhang, Z., Cui, P., & Zhu, W. (2020). Deep learning on graphs: A survey. IEEE Transactions on Knowledge and Data Engineering.
go back to reference Zylberberg, A., Dehaene, S., Roelfsema, P. R., & Sigman, M. (2011). The human turing machine: A neural framework for mental programs. Trends in Cognitive Sciences, 15(7), 293–300. Zylberberg, A., Dehaene, S., Roelfsema, P. R., & Sigman, M. (2011). The human turing machine: A neural framework for mental programs. Trends in Cognitive Sciences, 15(7), 293–300.
Metadata
Title
The Computational Origin of Representation
Author
Steven T. Piantadosi
Publication date
03-11-2020
Publisher
Springer Netherlands
Published in
Minds and Machines / Issue 1/2021
Print ISSN: 0924-6495
Electronic ISSN: 1572-8641
DOI
https://doi.org/10.1007/s11023-020-09540-9

Other articles of this Issue 1/2021

Minds and Machines 1/2021 Go to the issue

Premium Partner