Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 1/2018

14-11-2017

The Effect of Deposit Temperature on the Catalytic SO2-to-SO3 Conversion in a Copper Flash Smelting Heat Recovery Boiler

Authors: Juho Lehmusto, Emil Vainio, Tor Laurén, Mari Lindgren

Published in: Metallurgical and Materials Transactions B | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of the work was to study the catalytic role of copper flash smelter deposit in the SO2-to-SO3 conversion. In addition, the effect of process gas temperature at 548 K to 1173 K (275 °C to 900 °C) on the amount of SO3 formed was addressed both in the absence and presence of genuine copper flash smelter deposit. The SO3 conversion rate changed as a function of process gas temperature, peaking at 1023 K (750 °C). A dramatic increase in the SO2-to-SO3 conversion was observed when process dust was present, clearly indicating that process dust catalyzes the SO2-to-SO3 conversion. Based on these results, the catalytic ability of the deposit may lead to sulfuric acid dew point corrosion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference T. Mäkinen, P. Taskinen, T. I. Min. Metall. C, (2008), 117(2), 86–94. T. Mäkinen, P. Taskinen, T. I. Min. Metall. C, (2008), 117(2), 86–94.
3.
go back to reference M.E. Schelsinger, M.J. King, K.C. Sole, W.G. Davenport: Extractive Metallurgy of Copper, Elsevier, Amsterdam, 2011. M.E. Schelsinger, M.J. King, K.C. Sole, W.G. Davenport: Extractive Metallurgy of Copper, Elsevier, Amsterdam, 2011.
5.
go back to reference E.R. Lovejoy, D.R. Hanson, L.G. Huey, J. Phys. Chem., (1996), 100(51), 19911–16.CrossRef E.R. Lovejoy, D.R. Hanson, L.G. Huey, J. Phys. Chem., (1996), 100(51), 19911–16.CrossRef
6.
7.
go back to reference J.T. Jayne, U. Poeschl, Y. Chen, D. Dai, L. Molina, D.R. Worsnop, C.E. Kolb, M.J. Molina, J. Phys. Chem. A, (1997), 101(51), 10000–11.CrossRef J.T. Jayne, U. Poeschl, Y. Chen, D. Dai, L. Molina, D.R. Worsnop, C.E. Kolb, M.J. Molina, J. Phys. Chem. A, (1997), 101(51), 10000–11.CrossRef
8.
go back to reference T. Ranki-Kilpinen, Sulphation of cuprous and cupric oxide dusts and heterogeneous copper matte particles in simulated flash smelting heat recovery boiler conditions, Doctoral Thesis, Helsinki University of Technology, 2004. T. Ranki-Kilpinen, Sulphation of cuprous and cupric oxide dusts and heterogeneous copper matte particles in simulated flash smelting heat recovery boiler conditions, Doctoral Thesis, Helsinki University of Technology, 2004.
9.
go back to reference A.G. Okkes, Get acid dew point of flue gas, Hydrocarb. Process., (1987), 66(7), 53–55. A.G. Okkes, Get acid dew point of flue gas, Hydrocarb. Process., (1987), 66(7), 53–55.
10.
11.
go back to reference J. Lehmusto, D. Stenlund, M. Lindgren, P. Yrjas, Oxid. Met., (2017), 87(1-2), 199–214.CrossRef J. Lehmusto, D. Stenlund, M. Lindgren, P. Yrjas, Oxid. Met., (2017), 87(1-2), 199–214.CrossRef
12.
go back to reference T. Markova, B. Boyanov, S. Pironkov, N. Shopov, J.Min. Metall. B, (2000), 36(3-4), 195–08. T. Markova, B. Boyanov, S. Pironkov, N. Shopov, J.Min. Metall. B, (2000), 36(3-4), 195–08.
14.
go back to reference J.M. Brossard, I. Diop, X. Chaucherie, F. Nicol, C. Rapin, M. Vilasi, Mater. Corros., (2011), 62(6), 543–48.CrossRef J.M. Brossard, I. Diop, X. Chaucherie, F. Nicol, C. Rapin, M. Vilasi, Mater. Corros., (2011), 62(6), 543–48.CrossRef
15.
go back to reference D. Lindberg, J. Niemi, M. Engblom, P. Yrjas, T. Laurén, M. Hupa, Fuel Proc. Technol., (2016), 141(2), 285–98.CrossRef D. Lindberg, J. Niemi, M. Engblom, P. Yrjas, T. Laurén, M. Hupa, Fuel Proc. Technol., (2016), 141(2), 285–98.CrossRef
16.
go back to reference T.L. Jørgensen, H. Linbjerg, P. Glarborg, Chem. Eng. Sci., (2007), 62(16), 4496–99.CrossRef T.L. Jørgensen, H. Linbjerg, P. Glarborg, Chem. Eng. Sci., (2007), 62(16), 4496–99.CrossRef
17.
go back to reference D. Fleig, K. Andersson, F. Johnsson, Ind. Eng. Chem. Res., (2012), 51(28), 9483–91.CrossRef D. Fleig, K. Andersson, F. Johnsson, Ind. Eng. Chem. Res., (2012), 51(28), 9483–91.CrossRef
19.
20.
go back to reference R. Spörl, J. Walker, L. Belo, K. Shah, R. Stanger, J. Maier, T. Wall, G. Scheffknecht, Energ. Fuel., (2014), 28(8), 5296–5306.CrossRef R. Spörl, J. Walker, L. Belo, K. Shah, R. Stanger, J. Maier, T. Wall, G. Scheffknecht, Energ. Fuel., (2014), 28(8), 5296–5306.CrossRef
21.
22.
go back to reference L.P. Belo, L.K. Elliott, R.J. Stanger, R. Spörl, K.V. Shah, J. Maier, T.F. Wall, Energ. Fuel., (2014), 28(11), 7243-7251.CrossRef L.P. Belo, L.K. Elliott, R.J. Stanger, R. Spörl, K.V. Shah, J. Maier, T.F. Wall, Energ. Fuel., (2014), 28(11), 7243-7251.CrossRef
23.
go back to reference R.K. Jana, B. Gorai, Premchand, Environmental and Waste Management, Jamshedpur, NML, 1998. R.K. Jana, B. Gorai, Premchand, Environmental and Waste Management, Jamshedpur, NML, 1998.
24.
25.
go back to reference E. Vainio, T. Laurén, N. DeMartini, A. Brink, M. Hupa, J-FOR, (2014), 4(6), 14-22. E. Vainio, T. Laurén, N. DeMartini, A. Brink, M. Hupa, J-FOR, (2014), 4(6), 14-22.
26.
go back to reference R.J. St. Eloi, C.J. Newman, G. Macfarlane, CIM Bull., (1994), 87(977), 77-85. R.J. St. Eloi, C.J. Newman, G. Macfarlane, CIM Bull., (1994), 87(977), 77-85.
27.
28.
go back to reference Y. Yang, A. Jokilaakso, Thermodynamic analysis of dust sulphation reactions, Helsinki, Teknillinen korkeakoulu, 1997. Y. Yang, A. Jokilaakso, Thermodynamic analysis of dust sulphation reactions, Helsinki, Teknillinen korkeakoulu, 1997.
29.
go back to reference R.C. Weast (Ed.) (2017), CRC Handbook of Chemistry and Physics, 60th Edition. CRC Press, Boca Raton R.C. Weast (Ed.) (2017), CRC Handbook of Chemistry and Physics, 60th Edition. CRC Press, Boca Raton
30.
go back to reference P. Glarborg, D. Kubel, K. Dam-Johansen, H.-M. Chiang, J.W. Bozzelli, Int. J. Chem. Kinet., (1996), 28(10), 773-790.CrossRef P. Glarborg, D. Kubel, K. Dam-Johansen, H.-M. Chiang, J.W. Bozzelli, Int. J. Chem. Kinet., (1996), 28(10), 773-790.CrossRef
31.
go back to reference Srivastava RK, Miller CA, Erickson C, Jambhekar R (2004) J Air Waste Manage 54(6):750-762.CrossRef Srivastava RK, Miller CA, Erickson C, Jambhekar R (2004) J Air Waste Manage 54(6):750-762.CrossRef
32.
go back to reference L. Hindiyarti, P. Glarborg, P. Marshall, J. Phys. Chem. A, (2007), 111(19), 3984-3991.CrossRef L. Hindiyarti, P. Glarborg, P. Marshall, J. Phys. Chem. A, (2007), 111(19), 3984-3991.CrossRef
33.
go back to reference D. Fleig, M.U. Alzueta, F. Normann, M. Abián, K. Andersson, F. Johnsson, Combust. Flame, (2013), 160(6), 1142-1151.CrossRef D. Fleig, M.U. Alzueta, F. Normann, M. Abián, K. Andersson, F. Johnsson, Combust. Flame, (2013), 160(6), 1142-1151.CrossRef
34.
go back to reference R. Stanger, L. Belo, T. Ting, C. Spero, T. Wall, Int. J. Greenh. Gas Con., (2016), 47, 221-232.CrossRef R. Stanger, L. Belo, T. Ting, C. Spero, T. Wall, Int. J. Greenh. Gas Con., (2016), 47, 221-232.CrossRef
35.
go back to reference F. Verhoff, J. Banchero, Chem. Eng. Proc., (1974), 70(8), 71-72. F. Verhoff, J. Banchero, Chem. Eng. Proc., (1974), 70(8), 71-72.
36.
go back to reference W.M.M. Huijbregts, R.G.I. Leferink, Anti-Corros. Methods M., (2004), 51(3), 173-188. W.M.M. Huijbregts, R.G.I. Leferink, Anti-Corros. Methods M., (2004), 51(3), 173-188.
37.
go back to reference V. Ganapathy, Hydrocarb. Process., (1989), 68(1), 57-59. V. Ganapathy, Hydrocarb. Process., (1989), 68(1), 57-59.
Metadata
Title
The Effect of Deposit Temperature on the Catalytic SO2-to-SO3 Conversion in a Copper Flash Smelting Heat Recovery Boiler
Authors
Juho Lehmusto
Emil Vainio
Tor Laurén
Mari Lindgren
Publication date
14-11-2017
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 1/2018
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-1130-6

Other articles of this Issue 1/2018

Metallurgical and Materials Transactions B 1/2018 Go to the issue

Premium Partners