Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2021

13-05-2021

The Effect of Solution Heat Treatment Time on the Phase Formation and Selected Mechanical Properties of Ti-25Ta-xZr Alloys for Application as Biomaterials

Authors: Pedro Akira Bazaglia Kuroda, Fernanda de Freitas Quadros, Conrado Ramos Moreira Afonso, Carlos Roberto Grandini

Published in: Journal of Materials Engineering and Performance | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study analyzed the influence of solution heat treatment on the structure, microstructure, hardness, and elastic modulus of a ternary alloys Ti-25Ta-xZr system, where the zirconium content was varied to 0, 10, 20, 30, and 40 wt%. The solution heat treatments (SHT) performed in this paper were conducted at 1273 K during 0, 3, and 6 h. Structural and microstructural analyses were performed using x-ray diffraction, optical microscopy, and scanning, and transmission electron microscopy. An analysis of the alloys’ selected mechanical properties was carried out using microhardness and dynamic elastic modulus measurements. The results showed that zirconium helped stabilize the β phase since by adding zirconium to the alloy, the tantalum volumetric fraction increased. SHT with longer duration induced precipitation of the β phase in the Ti-25Ta-Zr alloy system. With higher zirconium concentrations, Ti-25Ta-xZr alloys showed better mechanical compatibility with human bone with a low elastic modulus but higher hardness values, making the mechanical conformation of the alloy more difficult. The Ti-25Ta-30Zr alloy had high hardness and elastic modulus after being subjected to solution for 3 and 6 h, indicating ω phase precipitation, and Ti-25Ta-40Zr alloy showed the lowest value of elastic modulus of 57 GPa with good prospects for applications as a metallic biomaterial.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Hanawa, 1 - Overview of Metals and Applications, Metals for Biomedical Devicesed, Woodhead Publishing, Cambridge, 2010, p 3–24 T. Hanawa, 1 - Overview of Metals and Applications, Metals for Biomedical Devicesed, Woodhead Publishing, Cambridge, 2010, p 3–24
2.
go back to reference M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 231–236.CrossRef M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 231–236.CrossRef
3.
go back to reference S.S. Sidhu, H. Singh and M.A.-H. Gepreel, A Review on Alloy Design, Biological Response, and Strengthening of β-Titanium Alloys as Biosmaterials, Mater. Sci. Eng. C, 2021, 121, p 111661.CrossRef S.S. Sidhu, H. Singh and M.A.-H. Gepreel, A Review on Alloy Design, Biological Response, and Strengthening of β-Titanium Alloys as Biosmaterials, Mater. Sci. Eng. C, 2021, 121, p 111661.CrossRef
4.
go back to reference E.W. Collings, The Physical Metallurgy of Titanium Alloys, ASM International, USA, 1989. E.W. Collings, The Physical Metallurgy of Titanium Alloys, ASM International, USA, 1989.
5.
go back to reference M.A. Murzinova, S.V. Zherebtsov, D.N. Klimenko and S.L. Semiatin, The Effect of β Stabilizers on the Structure and Energy of α/β Interfaces in Titanium Alloys, Metall. Mater. Trans. A., 2021, 52(5), p 1689–1698.CrossRef M.A. Murzinova, S.V. Zherebtsov, D.N. Klimenko and S.L. Semiatin, The Effect of β Stabilizers on the Structure and Energy of α/β Interfaces in Titanium Alloys, Metall. Mater. Trans. A., 2021, 52(5), p 1689–1698.CrossRef
6.
go back to reference C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, New Jersey, 2005. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, New Jersey, 2005.
7.
go back to reference C.C. Xavier, D.R.N. Correa, C.R. Grandini and L.A. Rocha, Low Temperature Heat Treatments on Ti-15Zr-xMo Alloys, J. Alloys Compd, 2017, 727, p 246–253.CrossRef C.C. Xavier, D.R.N. Correa, C.R. Grandini and L.A. Rocha, Low Temperature Heat Treatments on Ti-15Zr-xMo Alloys, J. Alloys Compd, 2017, 727, p 246–253.CrossRef
8.
go back to reference V. Sheremetyev, M. Petrzhik, Y. Zhukova, A. Kazakbiev, A. Arkhipova, M. Moisenovich, S. Prokoshkin and V. Brailovski, Structural, Physical, Chemical, and Biological Surface Characterization of Thermomechanically Treated Ti-Nb-based Alloys for Bone Implants, J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108(3), p 647–662.CrossRef V. Sheremetyev, M. Petrzhik, Y. Zhukova, A. Kazakbiev, A. Arkhipova, M. Moisenovich, S. Prokoshkin and V. Brailovski, Structural, Physical, Chemical, and Biological Surface Characterization of Thermomechanically Treated Ti-Nb-based Alloys for Bone Implants, J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108(3), p 647–662.CrossRef
9.
go back to reference A. Biesiekierski, D. Ping, Y. Li, J. Lin, K.S. Munir, Y. Yamabe-Mitarai and C. Wen, Extraordinary High Strength Ti-Zr-Ta Alloys Through Nanoscaled, Dual-cubic Spinodal Reinforcement, Acta Biomater., 2017, 53, p 549–558.CrossRef A. Biesiekierski, D. Ping, Y. Li, J. Lin, K.S. Munir, Y. Yamabe-Mitarai and C. Wen, Extraordinary High Strength Ti-Zr-Ta Alloys Through Nanoscaled, Dual-cubic Spinodal Reinforcement, Acta Biomater., 2017, 53, p 549–558.CrossRef
10.
go back to reference Y.L. Zhou, M. Niinomi and T. Akahori, Decomposition of Martensite α″ during Aging Treatments and Resulting Mechanical Properties of Ti−Ta Alloys, Mater. Sci. Eng. A, 2004, 384(1), p 92–101.CrossRef Y.L. Zhou, M. Niinomi and T. Akahori, Decomposition of Martensite α″ during Aging Treatments and Resulting Mechanical Properties of Ti−Ta Alloys, Mater. Sci. Eng. A, 2004, 384(1), p 92–101.CrossRef
11.
go back to reference Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui and H. Toda, Corrosion Resistance and Biocompatibility of Ti-Ta Alloys for Biomedical Applications, Mater. Sci. Eng. A, 2005, 398(1–2), p 28–36.CrossRef Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui and H. Toda, Corrosion Resistance and Biocompatibility of Ti-Ta Alloys for Biomedical Applications, Mater. Sci. Eng. A, 2005, 398(1–2), p 28–36.CrossRef
12.
go back to reference Y.-L. Zhou and M. Niinomi, Ti–25Ta Alloy with the Best Mechanical Compatibility in Ti–Ta Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2009, 29(3), p 1061–1065.CrossRef Y.-L. Zhou and M. Niinomi, Ti–25Ta Alloy with the Best Mechanical Compatibility in Ti–Ta Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2009, 29(3), p 1061–1065.CrossRef
13.
go back to reference M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants - A Review, Prog. Mater. Sci., 2009, 54(3), p 397–425.CrossRef M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants - A Review, Prog. Mater. Sci., 2009, 54(3), p 397–425.CrossRef
14.
go back to reference M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement–A Materials Science Perspective, Biomaterials, 1998, 19(18), p 1621–1639.CrossRef M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement–A Materials Science Perspective, Biomaterials, 1998, 19(18), p 1621–1639.CrossRef
15.
go back to reference D.R.N. Correa, F.B. Vicente, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf and C.R. Grandini, The Effect of the Solute on the Structure, Selected Mechanical Properties, and Biocompatibility of Ti-Zr System Alloys for Dental Applications, Mater. Sci. Eng. C-Mater. Biol. Appl., 2014, 34, p 354–359.CrossRef D.R.N. Correa, F.B. Vicente, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf and C.R. Grandini, The Effect of the Solute on the Structure, Selected Mechanical Properties, and Biocompatibility of Ti-Zr System Alloys for Dental Applications, Mater. Sci. Eng. C-Mater. Biol. Appl., 2014, 34, p 354–359.CrossRef
16.
go back to reference F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf and C.R. Grandini, The Influence of Small Quantities of Oxygen in the Structure Microstructure, Hardness, Elasticity Modulus and Cytocompatibility of Ti-Zr Alloys for Dental Applications, Materials, 2014, 7(1), p 542–553.CrossRef F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf and C.R. Grandini, The Influence of Small Quantities of Oxygen in the Structure Microstructure, Hardness, Elasticity Modulus and Cytocompatibility of Ti-Zr Alloys for Dental Applications, Materials, 2014, 7(1), p 542–553.CrossRef
17.
go back to reference D.R.N. Correa, P.A.B. Kuroda and C.R. Grandini, Structure, Microstructure, and Selected Mechanical Properties of Ti-Zr-Mo Alloys for Biomedical Applications, Adv. Mater. Res., 2014, 922, p 75–80.CrossRef D.R.N. Correa, P.A.B. Kuroda and C.R. Grandini, Structure, Microstructure, and Selected Mechanical Properties of Ti-Zr-Mo Alloys for Biomedical Applications, Adv. Mater. Res., 2014, 922, p 75–80.CrossRef
18.
go back to reference D.R.N. Correa, P.A.B. Kuroda, M.L. Lourenco, C.J.C. Fernandes, M.A.R. Buzalaf, W.F. Zambuzzi and C.R. Grandini, Development of Ti-15Zr-Mo Alloys for Applying as Implantable Biomedical Devices, J. Alloy Compd., 2018, 749, p 163–171.CrossRef D.R.N. Correa, P.A.B. Kuroda, M.L. Lourenco, C.J.C. Fernandes, M.A.R. Buzalaf, W.F. Zambuzzi and C.R. Grandini, Development of Ti-15Zr-Mo Alloys for Applying as Implantable Biomedical Devices, J. Alloy Compd., 2018, 749, p 163–171.CrossRef
19.
go back to reference P.A.B. Kuroda, M.A.R. Buzalaf and C.R. Grandini, Effect of Molybdenum on Structure, Microstructure and Mechanical Properties of Biomedical Ti-20Zr-Mo Alloys, Mater. Sci. Eng. C, 2016, 67, p 511–515.CrossRef P.A.B. Kuroda, M.A.R. Buzalaf and C.R. Grandini, Effect of Molybdenum on Structure, Microstructure and Mechanical Properties of Biomedical Ti-20Zr-Mo Alloys, Mater. Sci. Eng. C, 2016, 67, p 511–515.CrossRef
20.
go back to reference P.A.B. Kuroda, F. de Freitas Quadros, K.D.S.J. Sousa, T.A.G. Donato, R.O. de Araújo and C.R. Grandini, Preparation, Structural, Microstructural, Mechanical and Cytotoxic Characterization of as-cast Ti-25Ta-Zr Alloys, J. Mater. Sci. Mater. Med., 2020, 31(2), p 19.CrossRef P.A.B. Kuroda, F. de Freitas Quadros, K.D.S.J. Sousa, T.A.G. Donato, R.O. de Araújo and C.R. Grandini, Preparation, Structural, Microstructural, Mechanical and Cytotoxic Characterization of as-cast Ti-25Ta-Zr Alloys, J. Mater. Sci. Mater. Med., 2020, 31(2), p 19.CrossRef
21.
go back to reference N. Yumak and K. Aslantaş, A Review on Heat Treatment Efficiency in Metastable β Titanium Alloys: the Role of Treatment Process and Parameters, J. Market. Res., 2020, 9(6), p 15360–15380. N. Yumak and K. Aslantaş, A Review on Heat Treatment Efficiency in Metastable β Titanium Alloys: the Role of Treatment Process and Parameters, J. Market. Res., 2020, 9(6), p 15360–15380.
22.
go back to reference ASTM, E92-82 - Standard Test Method for Vickers Hardness of Metallic Materials. (E92-82, ASTM International, 2003) ASTM, E92-82 - Standard Test Method for Vickers Hardness of Metallic Materials. (E92-82, ASTM International, 2003)
23.
go back to reference ASTM, E1876–01 - Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. (E1876–01, ASTM International, 2002) ASTM, E1876–01 - Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. (E1876–01, ASTM International, 2002)
24.
go back to reference J.R.S. Martins Jr. and C.R. Grandini, Structural Characterization of Ti-15Mo Alloy Used as Biomaterial by Rietveld Method, J. Appl. Phys., 2012, 111(8), p 083535–083538.CrossRef J.R.S. Martins Jr. and C.R. Grandini, Structural Characterization of Ti-15Mo Alloy Used as Biomaterial by Rietveld Method, J. Appl. Phys., 2012, 111(8), p 083535–083538.CrossRef
25.
go back to reference P.A.B. Kuroda, M.L. Lourenço, D.R.N. Correa and C.R. Grandini, Thermomechanical Treatments Influence on the phase Composition, Microstructure, and Selected Mechanical Properties of Ti–20Zr–Mo Alloys System for Biomedical Applications, J. Alloys Compd., 2020, 812, p 152108.CrossRef P.A.B. Kuroda, M.L. Lourenço, D.R.N. Correa and C.R. Grandini, Thermomechanical Treatments Influence on the phase Composition, Microstructure, and Selected Mechanical Properties of Ti–20Zr–Mo Alloys System for Biomedical Applications, J. Alloys Compd., 2020, 812, p 152108.CrossRef
26.
go back to reference P.A.B. Kuroda, F.D.F. Quadros, R.O.D. Araújo, C.R.M. Afonso and C.R. Grandini, Effect of Thermomechanical Treatments on the Phases, Microstructure, Microhardness and Young’s Modulus of Ti-25Ta-Zr Alloys, Materials, 2019, 12(19), p 3210.CrossRef P.A.B. Kuroda, F.D.F. Quadros, R.O.D. Araújo, C.R.M. Afonso and C.R. Grandini, Effect of Thermomechanical Treatments on the Phases, Microstructure, Microhardness and Young’s Modulus of Ti-25Ta-Zr Alloys, Materials, 2019, 12(19), p 3210.CrossRef
27.
go back to reference Y.-L. Zhou and M. Niinomi, Microstructures and Mechanical Properties of Ti–50 mass% Ta Alloy for Biomedical Applications, J. Alloys Compd., 2008, 466(1–2), p 535–542.CrossRef Y.-L. Zhou and M. Niinomi, Microstructures and Mechanical Properties of Ti–50 mass% Ta Alloy for Biomedical Applications, J. Alloys Compd., 2008, 466(1–2), p 535–542.CrossRef
28.
go back to reference S.B. Gabriel, L.H. de Almeida, C.A. Nunes, J. Dille and G.A. Soares, Maximisation of the Ratio of Microhardness to the Young’s Modulus of Ti–12Mo–13Nb Alloy Through Microstructure Changes, Mater. Sci. Eng. C, 2013, 33(6), p 3319–3324.CrossRef S.B. Gabriel, L.H. de Almeida, C.A. Nunes, J. Dille and G.A. Soares, Maximisation of the Ratio of Microhardness to the Young’s Modulus of Ti–12Mo–13Nb Alloy Through Microstructure Changes, Mater. Sci. Eng. C, 2013, 33(6), p 3319–3324.CrossRef
29.
go back to reference T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima and J.L. Soubeyroux, Characterization of Nanophase Precipitation in a Metastable β Titanium-based Alloy by Electrical Resistivity, Dilatometry and Neutron Diffraction, Scr. Mater., 2008, 58(4), p 271–274.CrossRef T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima and J.L. Soubeyroux, Characterization of Nanophase Precipitation in a Metastable β Titanium-based Alloy by Electrical Resistivity, Dilatometry and Neutron Diffraction, Scr. Mater., 2008, 58(4), p 271–274.CrossRef
30.
go back to reference C.R.M. Afonso, A. Amigó, V. Stolyarov, D. Gunderov and V. Amigó, From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion, Sci. Rep., 2017, 7(1), p 13618.CrossRef C.R.M. Afonso, A. Amigó, V. Stolyarov, D. Gunderov and V. Amigó, From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion, Sci. Rep., 2017, 7(1), p 13618.CrossRef
Metadata
Title
The Effect of Solution Heat Treatment Time on the Phase Formation and Selected Mechanical Properties of Ti-25Ta-xZr Alloys for Application as Biomaterials
Authors
Pedro Akira Bazaglia Kuroda
Fernanda de Freitas Quadros
Conrado Ramos Moreira Afonso
Carlos Roberto Grandini
Publication date
13-05-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05849-3

Other articles of this Issue 8/2021

Journal of Materials Engineering and Performance 8/2021 Go to the issue

Premium Partners