Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2016

22-08-2016

The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices

Authors: Mengnan Guo, Alisina Toloei, Harm H. Rotermund

Published in: Journal of Materials Engineering and Performance | Issue 10/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.B. Park and J.D. Bronzino, Biomaterials: Principles and Applications, CRC Press, Boca Raton, 2002CrossRef J.B. Park and J.D. Bronzino, Biomaterials: Principles and Applications, CRC Press, Boca Raton, 2002CrossRef
2.
go back to reference M. Niinomi, Recent Metallic Materials for Biomedical Applications, Metall. Mater. Trans. A, 2002, 33, p 477–486CrossRef M. Niinomi, Recent Metallic Materials for Biomedical Applications, Metall. Mater. Trans. A, 2002, 33, p 477–486CrossRef
3.
go back to reference J. Pan, C. Leygraf, D. Thierry, A.M. Ektessabi, and J. Biomed, Corrosion Resistance for Biomaterial Applications of TiO2 Films Deposited on Titanium and Stainless Steel by Ion-Beam-Assisted Sputtering, Mater. Res., 1997, 35, p 309–318 J. Pan, C. Leygraf, D. Thierry, A.M. Ektessabi, and J. Biomed, Corrosion Resistance for Biomaterial Applications of TiO2 Films Deposited on Titanium and Stainless Steel by Ion-Beam-Assisted Sputtering, Mater. Res., 1997, 35, p 309–318
4.
go back to reference Y. Xin, C. Liu, X. Zhang, G. Tang, X. Tian, and P.K. Chu, Corrosion Behavior of Biomedical AZ91 Magnesium Alloy in Simulated Body Fluids, Mater. Res., 2007, 22, p 2004–2011CrossRef Y. Xin, C. Liu, X. Zhang, G. Tang, X. Tian, and P.K. Chu, Corrosion Behavior of Biomedical AZ91 Magnesium Alloy in Simulated Body Fluids, Mater. Res., 2007, 22, p 2004–2011CrossRef
5.
go back to reference Y. Xin, C. Liu, K. Huo, G. Tang, X. Tian, and P.K. Chu, Corrosion Behavior of ZrN/Zr Coated Biomedical AZ91 Magnesium Alloy, Surf. Coat. Technol., 2009, 203, p 2554–2557CrossRef Y. Xin, C. Liu, K. Huo, G. Tang, X. Tian, and P.K. Chu, Corrosion Behavior of ZrN/Zr Coated Biomedical AZ91 Magnesium Alloy, Surf. Coat. Technol., 2009, 203, p 2554–2557CrossRef
6.
go back to reference S. Virtanen, I. Milošev, E. Gomez-Barrena, R. Trebše, J. Salo, and Y.T. Konttinen, Special Modes of Corrosion under Physiological and Simulated Physiological Conditions, Acta Biomater., 2008, 4, p 468–476CrossRef S. Virtanen, I. Milošev, E. Gomez-Barrena, R. Trebše, J. Salo, and Y.T. Konttinen, Special Modes of Corrosion under Physiological and Simulated Physiological Conditions, Acta Biomater., 2008, 4, p 468–476CrossRef
7.
go back to reference H.R.A. Bidhendi and M. Pouranvari, Corrosion Study of Metallic Biomaterials in Simulated Body Fluid, Metall. Mater. Eng., 2011, 17, p 13–22 H.R.A. Bidhendi and M. Pouranvari, Corrosion Study of Metallic Biomaterials in Simulated Body Fluid, Metall. Mater. Eng., 2011, 17, p 13–22
8.
go back to reference E. Marin, A. Lanzutti, L. Guzman, and L. Fedrizzi, Corrosion Protection of AISI, 316 Stainless Steel by ALD Alumina/Titania Nanometric Coatings, J. Coat. Technol. Res., 2011, 8, p 655–659CrossRef E. Marin, A. Lanzutti, L. Guzman, and L. Fedrizzi, Corrosion Protection of AISI, 316 Stainless Steel by ALD Alumina/Titania Nanometric Coatings, J. Coat. Technol. Res., 2011, 8, p 655–659CrossRef
9.
go back to reference P.E. Klages, Z. Bai, M. Lobban, M.K. Rotermund, and H.H. Rotermund, Enhancing Resistance to Pitting Corrosion in Mechanically Polished Stainless Steel 316 LVM by Water Treatment, Electrochem. Commun., 2012, 15, p 54–58CrossRef P.E. Klages, Z. Bai, M. Lobban, M.K. Rotermund, and H.H. Rotermund, Enhancing Resistance to Pitting Corrosion in Mechanically Polished Stainless Steel 316 LVM by Water Treatment, Electrochem. Commun., 2012, 15, p 54–58CrossRef
10.
go back to reference M.G. Fontana, Corrosion Engineering, Tata McGraw-Hill Education, New Delhi, 2005 M.G. Fontana, Corrosion Engineering, Tata McGraw-Hill Education, New Delhi, 2005
11.
go back to reference L. Chenglong, Y. Dazhi, L. Guoqiang, and Q. Min, Corrosion Resistance and Hemocompatibility of Multilayered Ti/TiN-Coated Surgical AISI, 316L Stainless Steel, Mater. Lett., 2005, 59, p 3813–3819CrossRef L. Chenglong, Y. Dazhi, L. Guoqiang, and Q. Min, Corrosion Resistance and Hemocompatibility of Multilayered Ti/TiN-Coated Surgical AISI, 316L Stainless Steel, Mater. Lett., 2005, 59, p 3813–3819CrossRef
12.
go back to reference C. Liu, G. Lin, D. Yang, and M. Qi, In Vitro Corrosion Behavior of Multilayered Ti/TiN Coating on Biomedical AISI, 316L Stainless Steel, Surf. Coat. Technol., 2006, 200, p 4011–4016CrossRef C. Liu, G. Lin, D. Yang, and M. Qi, In Vitro Corrosion Behavior of Multilayered Ti/TiN Coating on Biomedical AISI, 316L Stainless Steel, Surf. Coat. Technol., 2006, 200, p 4011–4016CrossRef
13.
go back to reference F.T. Cheng, K.H. Lo, and H.C. Man, NiTi Cladding on Stainless Steel by TIG Surfacing Process Part II. Corrosion Behavior, Surf. Coat. Technol., 2003, 172, p 316–321CrossRef F.T. Cheng, K.H. Lo, and H.C. Man, NiTi Cladding on Stainless Steel by TIG Surfacing Process Part II. Corrosion Behavior, Surf. Coat. Technol., 2003, 172, p 316–321CrossRef
14.
go back to reference S.M. Hosseinalipour, A. Ershad-Langroudi, A.N. Hayati, and A.M. Nabizade-Haghighi, Characterization of Sol-Gel Coated 316L Stainless Steel for Biomedical Applications, Prog. Org. Coat., 2010, 67, p 371–374CrossRef S.M. Hosseinalipour, A. Ershad-Langroudi, A.N. Hayati, and A.M. Nabizade-Haghighi, Characterization of Sol-Gel Coated 316L Stainless Steel for Biomedical Applications, Prog. Org. Coat., 2010, 67, p 371–374CrossRef
15.
go back to reference J. Gallardo, A. Duran, and J.J. De Damborenea, Electrochemical and In Vitro Behaviour of Sol–Sel Coated 316L Stainless Steel, Corros. Sci., 2004, 46, p 795–806CrossRef J. Gallardo, A. Duran, and J.J. De Damborenea, Electrochemical and In Vitro Behaviour of Sol–Sel Coated 316L Stainless Steel, Corros. Sci., 2004, 46, p 795–806CrossRef
16.
go back to reference T.P. Chou, C. Chandrasekaran, and G.Z. Cao, Sol–Gel-Derived Hybrid Coatings for Corrosion Protection, J. Sol Gel Sci. Technol., 2003, 26, p 321–327CrossRef T.P. Chou, C. Chandrasekaran, and G.Z. Cao, Sol–Gel-Derived Hybrid Coatings for Corrosion Protection, J. Sol Gel Sci. Technol., 2003, 26, p 321–327CrossRef
17.
go back to reference M.L. Zheludkevich, I.M. Salvado, and M.G.S. Ferreira, Sol–Gel Coatings for Corrosion Protection of Metals, J. Mater. Chem., 2005, 15, p 5099–5111CrossRef M.L. Zheludkevich, I.M. Salvado, and M.G.S. Ferreira, Sol–Gel Coatings for Corrosion Protection of Metals, J. Mater. Chem., 2005, 15, p 5099–5111CrossRef
18.
go back to reference R.Z. Zand, K. Verbeken, and A. Adriaens, The Corrosion Resistance of 316L Stainless Steel Coated with a Silane Hybrid Nanocomposite Coating, Prog. Org. Coat., 2011, 72, p 709–715CrossRef R.Z. Zand, K. Verbeken, and A. Adriaens, The Corrosion Resistance of 316L Stainless Steel Coated with a Silane Hybrid Nanocomposite Coating, Prog. Org. Coat., 2011, 72, p 709–715CrossRef
19.
go back to reference A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting Corrosion Behaviour of Austenitic Stainless Steels-Combining Effects of Mn and Mo Additions, Corros. Sci., 2008, 50, p 1796–1806CrossRef A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting Corrosion Behaviour of Austenitic Stainless Steels-Combining Effects of Mn and Mo Additions, Corros. Sci., 2008, 50, p 1796–1806CrossRef
20.
go back to reference F. Zhang, E.T. Kang, K.G. Neoh, P. Wang, and K.L. Tan, Surface Modification of Stainless Steel by Grafting of Poly (Ethylene Glycol) for Reduction in Protein Adsorption, Biomaterials, 2001, 22, p 1541–1548CrossRef F. Zhang, E.T. Kang, K.G. Neoh, P. Wang, and K.L. Tan, Surface Modification of Stainless Steel by Grafting of Poly (Ethylene Glycol) for Reduction in Protein Adsorption, Biomaterials, 2001, 22, p 1541–1548CrossRef
21.
go back to reference M. Talha, C.K. Behera, and O.P. Sinha, A Review on Nickel-Free Nitrogen Containing Austenitic Stainless Steels for Biomedical Applications, Mater. Sci. Eng., C, 2013, 33, p 3563–3575CrossRef M. Talha, C.K. Behera, and O.P. Sinha, A Review on Nickel-Free Nitrogen Containing Austenitic Stainless Steels for Biomedical Applications, Mater. Sci. Eng., C, 2013, 33, p 3563–3575CrossRef
22.
go back to reference C.-C. Shih, C.-M. Shih, Y.-Y. Su, L.H.J. Su, M.-S. Chang, and S.-J. Lin, Effect of Surface Oxide Properties on Corrosion Resistance of 316L Stainless Steel for Biomedical Applications, Corros. Sci., 2004, 46, p 427–441CrossRef C.-C. Shih, C.-M. Shih, Y.-Y. Su, L.H.J. Su, M.-S. Chang, and S.-J. Lin, Effect of Surface Oxide Properties on Corrosion Resistance of 316L Stainless Steel for Biomedical Applications, Corros. Sci., 2004, 46, p 427–441CrossRef
23.
go back to reference A. Shahryari, S. Omanovic, and J.A. Szpunar, Electrochemical Formation of Highly Pitting Resistant Passive Films on a Biomedical Grade 316LVM Stainless Steel Surface, Mater. Sci. Eng., C, 2008, 28, p 94–106CrossRef A. Shahryari, S. Omanovic, and J.A. Szpunar, Electrochemical Formation of Highly Pitting Resistant Passive Films on a Biomedical Grade 316LVM Stainless Steel Surface, Mater. Sci. Eng., C, 2008, 28, p 94–106CrossRef
24.
go back to reference A. Shahryari and S. Omanovic, Improvement of Pitting Corrosion Resistance of a Biomedical Grade 316LVM Stainless Steel by Electrochemical Modification of the Passive Film Semiconducting Properties, Electrochem. Commun., 2007, 9, p 76–82CrossRef A. Shahryari and S. Omanovic, Improvement of Pitting Corrosion Resistance of a Biomedical Grade 316LVM Stainless Steel by Electrochemical Modification of the Passive Film Semiconducting Properties, Electrochem. Commun., 2007, 9, p 76–82CrossRef
25.
go back to reference A.S. Toloei, V. Stoilov, and D.O. Northwood, A New Approach to Combating Corrosion of Metallic Materials, Appl. Surf. Sci., 2013, 284, p 242–247CrossRef A.S. Toloei, V. Stoilov, and D.O. Northwood, A New Approach to Combating Corrosion of Metallic Materials, Appl. Surf. Sci., 2013, 284, p 242–247CrossRef
26.
go back to reference A.S. Toloei, V. Stoilov, and D.O. Northwood, An Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization Study of the Effect of Unidirectional Roughness on the Corrosion of Nickel, CMEM, 2014, 2, p 243–254CrossRef A.S. Toloei, V. Stoilov, and D.O. Northwood, An Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization Study of the Effect of Unidirectional Roughness on the Corrosion of Nickel, CMEM, 2014, 2, p 243–254CrossRef
27.
go back to reference A.S. Toloei, V. Stoilov, and D.O. Northwood, The Effect of Different Surface Topographies on the Corrosion Behavior of Nickel, WIT Trans. Eng. Sci., 2013, 77, p 193–204CrossRef A.S. Toloei, V. Stoilov, and D.O. Northwood, The Effect of Different Surface Topographies on the Corrosion Behavior of Nickel, WIT Trans. Eng. Sci., 2013, 77, p 193–204CrossRef
28.
go back to reference A.S. Toloei, V. Stoilov, and D.O. Northwood, The Relationship Between Surface Roughness and Corrosion, in ASME 2013 Int. Mech. Eng. Congr. Expo. (American Society of Mechanical Engineers, 2013), p V02BT02A054–V02BT02A054. A.S. Toloei, V. Stoilov, and D.O. Northwood, The Relationship Between Surface Roughness and Corrosion, in ASME 2013 Int. Mech. Eng. Congr. Expo. (American Society of Mechanical Engineers, 2013), p V02BT02A054–V02BT02A054.
29.
go back to reference R.S. Bedi, D.E. Beving, L.P. Zanello, and Y. Yan, Biocompatibility of Corrosion-Resistant Zeolite Coatings for Titanium Alloy Biomedical Implants, Acta Biomater., 2009, 5, p 3265–3271CrossRef R.S. Bedi, D.E. Beving, L.P. Zanello, and Y. Yan, Biocompatibility of Corrosion-Resistant Zeolite Coatings for Titanium Alloy Biomedical Implants, Acta Biomater., 2009, 5, p 3265–3271CrossRef
30.
go back to reference R. Hauert, A Review of Modified DLC Coatings for Biological Applications, Diam. Relat. Mater., 2003, 12, p 583–589CrossRef R. Hauert, A Review of Modified DLC Coatings for Biological Applications, Diam. Relat. Mater., 2003, 12, p 583–589CrossRef
31.
go back to reference A.S. Toloei, V. Stoilov, and D.O. Northwood, in ASME 2012 Int. Mech. Eng. Congr. Expo. (American Society of Mechanical Engineers, 2012), p 1297–1303 A.S. Toloei, V. Stoilov, and D.O. Northwood, in ASME 2012 Int. Mech. Eng. Congr. Expo. (American Society of Mechanical Engineers, 2012), p 1297–1303
32.
go back to reference M. Dornhege, C. Punckt, J.L. Hudson, and H.H. Rotermund, Spreading of Corrosion on Stainless Steel Simultaneous Observation of Metastable Pits and Oxide Film, J. Electrochem. Soc., 2007, 154, p C24–C27CrossRef M. Dornhege, C. Punckt, J.L. Hudson, and H.H. Rotermund, Spreading of Corrosion on Stainless Steel Simultaneous Observation of Metastable Pits and Oxide Film, J. Electrochem. Soc., 2007, 154, p C24–C27CrossRef
33.
go back to reference P. Wang, D. Zhang, and R. Qiu, Liquid/Solid Contact Mode of Super-Hydrophobic Film in Aqueous Solution and its Effect on Corrosion Resistance, Corros. Sci., 2012, 54, p 77–84CrossRef P. Wang, D. Zhang, and R. Qiu, Liquid/Solid Contact Mode of Super-Hydrophobic Film in Aqueous Solution and its Effect on Corrosion Resistance, Corros. Sci., 2012, 54, p 77–84CrossRef
34.
go back to reference W. Xi, Z. Qiao, C. Zhu, A. Jia, and M. Li, The Preparation of Lotus-Like Super-Hydrophobi Copper Surfaces by Electroplating, Appl. Surf. Sci., 2009, 255, p 4836–4839CrossRef W. Xi, Z. Qiao, C. Zhu, A. Jia, and M. Li, The Preparation of Lotus-Like Super-Hydrophobi Copper Surfaces by Electroplating, Appl. Surf. Sci., 2009, 255, p 4836–4839CrossRef
35.
go back to reference A. Marmur, From Hygrophilic to Superhygrophobic: Theoretical Conditions for Making High-Contact-Angle Surfaces from Low-Contact-Angle Materials, Langmuir, 2008, 24, p 7573–7579CrossRef A. Marmur, From Hygrophilic to Superhygrophobic: Theoretical Conditions for Making High-Contact-Angle Surfaces from Low-Contact-Angle Materials, Langmuir, 2008, 24, p 7573–7579CrossRef
36.
go back to reference A. Marmur, Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous Or Not To Be?, Langmuir, 2003, 19, p 8343–8348CrossRef A. Marmur, Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous Or Not To Be?, Langmuir, 2003, 19, p 8343–8348CrossRef
37.
go back to reference V. Vaikuntanathan, R. Kannan, and D. Sivakumar, Impact of Water Drops onto the Junction of a Hydrophobic Texture and a Hydrophilic Smooth Surface, Colloids Surf. Physicochem. Eng. Asp., 2010, 369, p 65–74CrossRef V. Vaikuntanathan, R. Kannan, and D. Sivakumar, Impact of Water Drops onto the Junction of a Hydrophobic Texture and a Hydrophilic Smooth Surface, Colloids Surf. Physicochem. Eng. Asp., 2010, 369, p 65–74CrossRef
38.
go back to reference A.S. Toloei, M. Guo, and H.H. Rotermund, The Effect of Surface Morphology on Corrosion Performance of SS 316 LVM Biomedical Devices, J. Mater. Eng. Perform., 2015, 24, p 3726–3736CrossRef A.S. Toloei, M. Guo, and H.H. Rotermund, The Effect of Surface Morphology on Corrosion Performance of SS 316 LVM Biomedical Devices, J. Mater. Eng. Perform., 2015, 24, p 3726–3736CrossRef
39.
go back to reference D. Landolt, Fundamental Aspects of Electropolishing, Electrochim. Acta, 1987, 32, p 1–11CrossRef D. Landolt, Fundamental Aspects of Electropolishing, Electrochim. Acta, 1987, 32, p 1–11CrossRef
40.
go back to reference J. Newman and K.E. Thomas-Alyea, Electrochemical Systems, Wiley, New York, 2012 J. Newman and K.E. Thomas-Alyea, Electrochemical Systems, Wiley, New York, 2012
41.
go back to reference K.J. Vetter, Electrochemical Kinetics: Theoretical Aspects, Elsevier, Burlington, 2013 K.J. Vetter, Electrochemical Kinetics: Theoretical Aspects, Elsevier, Burlington, 2013
42.
go back to reference J.O. Bockris and A.K. Reddy, Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science, Springer Science & Business Media, New York, 2001 J.O. Bockris and A.K. Reddy, Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science, Springer Science & Business Media, New York, 2001
43.
go back to reference P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, IET, London, 1997 P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, IET, London, 1997
Metadata
Title
The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices
Authors
Mengnan Guo
Alisina Toloei
Harm H. Rotermund
Publication date
22-08-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2299-6

Other articles of this Issue 10/2016

Journal of Materials Engineering and Performance 10/2016 Go to the issue

Premium Partners