Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2015

01-07-2015

The Effect of surface Treatment of Alumina NanoParticles with a Silane Coupling Agent on the Mechanical Properties of Polymer Nanocomposites

Authors: S. Amirchakhmaghi, A. Alavi Nia, G. Azizpour, H. Bamdadi

Published in: Mechanics of Composite Materials | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Surface-treated and untreated alumina nanoparticles were mixed with a polycarbonate matrix at different weight percentages and the mechanical properties of the nanocomposites produced were determined by subjecting them to quasi-static tension and Charpy impact tests. The results obtained showed that the surface treatment of nanoparticles had improved their mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Tehrani, A. Y. Boroujeni, T. B. Hartman, T. P. Haugh, S. W. Case, and M. S. Al-Haik, “Mechanical characterization and impact damage assessment of a woven-carbon-fiber reinforced carbon nanotube–epoxy composite,” Compos. Sci. Technol., 75, 42–48 (2013).CrossRef M. Tehrani, A. Y. Boroujeni, T. B. Hartman, T. P. Haugh, S. W. Case, and M. S. Al-Haik, “Mechanical characterization and impact damage assessment of a woven-carbon-fiber reinforced carbon nanotube–epoxy composite,” Compos. Sci. Technol., 75, 42–48 (2013).CrossRef
2.
go back to reference J. S. Park, S J Gwon, Y. M. Lim, and Y. Ch. Nho, “Influence of the stretching temperature on an alumina-filled microporous high-density polyethylene membrane,” Mater. Des., 31, 3215–3219 (2010).CrossRef J. S. Park, S J Gwon, Y. M. Lim, and Y. Ch. Nho, “Influence of the stretching temperature on an alumina-filled microporous high-density polyethylene membrane,” Mater. Des., 31, 3215–3219 (2010).CrossRef
3.
go back to reference S. Siengchin, J. Karger-Kocsis, and R. Thomann, “Alumina-filled polystyrene micro- and nanocomposites prepared by melt mixing with and without latex precompounding: Structure and properties,” J. Appl. Polym. Sci., 105, 2963–2972 (2007)..CrossRef S. Siengchin, J. Karger-Kocsis, and R. Thomann, “Alumina-filled polystyrene micro- and nanocomposites prepared by melt mixing with and without latex precompounding: Structure and properties,” J. Appl. Polym. Sci., 105, 2963–2972 (2007)..CrossRef
4.
go back to reference S. Fu, Yu. Wang, and Ya. Wang, “Tension testing of polycarbonate at high strain rates,” Polym. Test., 28, 724–729 (2009)..CrossRef S. Fu, Yu. Wang, and Ya. Wang, “Tension testing of polycarbonate at high strain rates,” Polym. Test., 28, 724–729 (2009)..CrossRef
5.
go back to reference Q. H. Shaha and Y. A. Abkar, “Effect of distance from the support on the penetration mechanism of clamped circular polycarbonate armor plates,” Int. J. Impact Eng., 35, 1244–1250 (2008)..CrossRef Q. H. Shaha and Y. A. Abkar, “Effect of distance from the support on the penetration mechanism of clamped circular polycarbonate armor plates,” Int. J. Impact Eng., 35, 1244–1250 (2008)..CrossRef
6.
go back to reference Q. H. Shaha, “Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts,” Int. J. Impact Eng., 36, 1128–1135 (2009).CrossRef Q. H. Shaha, “Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts,” Int. J. Impact Eng., 36, 1128–1135 (2009).CrossRef
7.
go back to reference H. Vahabi, O. Eterradossi, L. Ferry, C. Longuet, R. Sonnier, and J. M. Lopez-Cuesta, “Polycarbonate nanocomposite with improved fire behavior, physical and psychophysical transparency,” Eur. Polym. J., 49, No. 2, 319–327 (2013).CrossRef H. Vahabi, O. Eterradossi, L. Ferry, C. Longuet, R. Sonnier, and J. M. Lopez-Cuesta, “Polycarbonate nanocomposite with improved fire behavior, physical and psychophysical transparency,” Eur. Polym. J., 49, No. 2, 319–327 (2013).CrossRef
8.
go back to reference M. U. Orden, D. Pascual, A. Antelo, J. A. Andrés, V. Lorenzo, and J. M. Urreaga, “Polymer degradation during the melt processing of clay-reinforced polycarbonate nanocomposites,” Polymer Degrad. Stab., 98, No. 6, 1110–1117 (2013).CrossRef M. U. Orden, D. Pascual, A. Antelo, J. A. Andrés, V. Lorenzo, and J. M. Urreaga, “Polymer degradation during the melt processing of clay-reinforced polycarbonate nanocomposites,” Polymer Degrad. Stab., 98, No. 6, 1110–1117 (2013).CrossRef
9.
go back to reference P. Jindal, S. Pande, P. Sharma, V. Mangla, A. Chaudhury, D. Patel, B. P. Singh, R. B. Mathur, and M. Goyal, “High strain rate behavior of multi-walled carbon nanotube–polycarbonate composites,” Composites: Part B: Eng., 45, No. 1, 417–422 (2013).CrossRef P. Jindal, S. Pande, P. Sharma, V. Mangla, A. Chaudhury, D. Patel, B. P. Singh, R. B. Mathur, and M. Goyal, “High strain rate behavior of multi-walled carbon nanotube–polycarbonate composites,” Composites: Part B: Eng., 45, No. 1, 417–422 (2013).CrossRef
10.
go back to reference T. Hanemann, J. Haußelt, and E. Ritzhaupt-Kleissl, “Compounding, microinjection moulding and characterisation of polycarbonate-nanosized alumina composites for application in microoptics,” Microsyst. Technol., 15, 421–427 (2009)..CrossRef T. Hanemann, J. Haußelt, and E. Ritzhaupt-Kleissl, “Compounding, microinjection moulding and characterisation of polycarbonate-nanosized alumina composites for application in microoptics,” Microsyst. Technol., 15, 421–427 (2009)..CrossRef
11.
go back to reference A. Chandra, L. S. Turng, P. Gopalan, R. M. Rowell, and S. Gong, “Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties,” Compos. Sci. Technol., 68, 768–776 (2008)..CrossRef A. Chandra, L. S. Turng, P. Gopalan, R. M. Rowell, and S. Gong, “Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties,” Compos. Sci. Technol., 68, 768–776 (2008)..CrossRef
12.
go back to reference A. Christmann, P. Ienny, J. C. Quantin, A. S. Caro-Bretelle, and J. M. Lopez-Cuesta, “Mechanical behaviour at large strain of polycarbonate nanocomposites during uniaxial tensile test,” Polym., 52, 4033–4044 (2011).CrossRef A. Christmann, P. Ienny, J. C. Quantin, A. S. Caro-Bretelle, and J. M. Lopez-Cuesta, “Mechanical behaviour at large strain of polycarbonate nanocomposites during uniaxial tensile test,” Polym., 52, 4033–4044 (2011).CrossRef
13.
go back to reference Xi. Zhang and L. C. Simon, “In situ polymerization of hybrid polyethylene-alumina nanocomposites,” Macromol. Mater. Eng., 290, 573–583 (2005)..CrossRef Xi. Zhang and L. C. Simon, “In situ polymerization of hybrid polyethylene-alumina nanocomposites,” Macromol. Mater. Eng., 290, 573–583 (2005)..CrossRef
14.
go back to reference S. Zhao, L. S. Schadleer, R. Duncan, H. Hillborg, and T. Auletta, “Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy,” Compos. Sci. Technol., 68, 2965–2975 (2008)..CrossRef S. Zhao, L. S. Schadleer, R. Duncan, H. Hillborg, and T. Auletta, “Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy,” Compos. Sci. Technol., 68, 2965–2975 (2008)..CrossRef
15.
go back to reference S. C. Zunjarrao and R. P. Singh, “Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer-sized aluminum particles,” Compos. Sci. Technol., 66, 2296–2305 (2006).CrossRef S. C. Zunjarrao and R. P. Singh, “Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer-sized aluminum particles,” Compos. Sci. Technol., 66, 2296–2305 (2006).CrossRef
16.
go back to reference L. T. Truong, Å. Larsen, B. Holme, F. K. Hansen, and J. Roots, “Morphology of syndiotactic polypropylene/alumina nanocomposites,” Polym., 52, 1116–1123 (2011).CrossRef L. T. Truong, Å. Larsen, B. Holme, F. K. Hansen, and J. Roots, “Morphology of syndiotactic polypropylene/alumina nanocomposites,” Polym., 52, 1116–1123 (2011).CrossRef
17.
go back to reference Zh. Guo, T. Pereira, O. Choi, Y. Wang, and H. T. Hahn, “Surface-functionalized alumina nanoparticle-filled polymeric nanocomposites with enhanced mechanical properties,” J. Mater. Chem., 16, 2800–2808 (2006)..CrossRef Zh. Guo, T. Pereira, O. Choi, Y. Wang, and H. T. Hahn, “Surface-functionalized alumina nanoparticle-filled polymeric nanocomposites with enhanced mechanical properties,” J. Mater. Chem., 16, 2800–2808 (2006)..CrossRef
Metadata
Title
The Effect of surface Treatment of Alumina NanoParticles with a Silane Coupling Agent on the Mechanical Properties of Polymer Nanocomposites
Authors
S. Amirchakhmaghi
A. Alavi Nia
G. Azizpour
H. Bamdadi
Publication date
01-07-2015
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2015
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-015-9506-7

Other articles of this Issue 3/2015

Mechanics of Composite Materials 3/2015 Go to the issue

Premium Partners