Skip to main content
Top
Published in: Journal of Scientific Computing 3/2017

17-09-2016

The Effect of the Consistent Mass Matrix on the Maximum-Principle for Scalar Conservation Equations

Authors: Jean-Luc Guermond, Bojan Popov, Yong Yang

Published in: Journal of Scientific Computing | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we study the effect of the use of the consistent mass matrix when solving scalar nonlinear conservation equations. It is shown that a continuous finite element method based on artificial viscosity in space and explicit time stepping using the consistent mass matrix cannot satisfy the maximum principle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Badia, S., Hierro, A.: On monotonicity-preserving stabilized finite element approximations of transport problems. SIAM J. Sci. Comput. 36(6), A2673–A2697 (2014)MathSciNetCrossRefMATH Badia, S., Hierro, A.: On monotonicity-preserving stabilized finite element approximations of transport problems. SIAM J. Sci. Comput. 36(6), A2673–A2697 (2014)MathSciNetCrossRefMATH
2.
go back to reference Burman, E.: On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws. BIT 47(4), 715–733 (2007)MathSciNetCrossRefMATH Burman, E.: On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws. BIT 47(4), 715–733 (2007)MathSciNetCrossRefMATH
3.
go back to reference Burman, E., Ern, A.: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Math. Comput. 74(252), 1637–1652 (2005). (electronic)MathSciNetCrossRefMATH Burman, E., Ern, A.: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Math. Comput. 74(252), 1637–1652 (2005). (electronic)MathSciNetCrossRefMATH
4.
go back to reference Christon, M.A., Martinez, M.J., Voth, T.E.: Generalized Fourier analyses of the advection-diffusion equation-part I: one-dimensional domains. Int. J. Numer. Methods Fluids 45(8), 839–887 (2004)CrossRefMATH Christon, M.A., Martinez, M.J., Voth, T.E.: Generalized Fourier analyses of the advection-diffusion equation-part I: one-dimensional domains. Int. J. Numer. Methods Fluids 45(8), 839–887 (2004)CrossRefMATH
5.
go back to reference Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009) Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009)
6.
go back to reference Dow, M.: Explicit inverses of toeplitz and associated matrices. ANZIAM J. 44(E), E185–E215 (2003) Dow, M.: Explicit inverses of toeplitz and associated matrices. ANZIAM J. 44(E), E185–E215 (2003)
7.
go back to reference Gresho, P., Sani, R., Engelman, M.: Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow. Incompressible Flow & the Finite Element Method. Wiley, New York (1998)MATH Gresho, P., Sani, R., Engelman, M.: Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow. Incompressible Flow & the Finite Element Method. Wiley, New York (1998)MATH
8.
go back to reference Guermond, J.-L., Nazarov, M.: A maximum-principle preserving \({C}^0\) finite element method for scalar conservation equations. Comput. Methods Appl. Mech. Eng. 272, 198–213 (2014)MathSciNetCrossRefMATH Guermond, J.-L., Nazarov, M.: A maximum-principle preserving \({C}^0\) finite element method for scalar conservation equations. Comput. Methods Appl. Mech. Eng. 272, 198–213 (2014)MathSciNetCrossRefMATH
9.
go back to reference Guermond, J.-L., Pasquetti, R.: A correction technique for the dispersive effects of mass lumping for transport problems. Comput. Methods Appl. Mech. Eng. 253, 186–198 (2013)MathSciNetCrossRefMATH Guermond, J.-L., Pasquetti, R.: A correction technique for the dispersive effects of mass lumping for transport problems. Comput. Methods Appl. Mech. Eng. 253, 186–198 (2013)MathSciNetCrossRefMATH
10.
go back to reference Guermond, J.-L., Popov, B.: Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal. 54(4), 2466–2489 (2016) arXiv:1509.07461 Guermond, J.-L., Popov, B.: Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal. 54(4), 2466–2489 (2016) arXiv:​1509.​07461
11.
go back to reference Jameson A.: Positive schemes and shock modelling for compressible flows. Int. J. Numer. Methods Fluids 20(8-9), 743–776 (1995). Finite elements in fluids—new trends and applications (Barcelona, 1993) Jameson A.: Positive schemes and shock modelling for compressible flows. Int. J. Numer. Methods Fluids 20(8-9), 743–776 (1995). Finite elements in fluids—new trends and applications (Barcelona, 1993)
12.
go back to reference Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. 81(123), 228–255 (1970)MathSciNet Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. 81(123), 228–255 (1970)MathSciNet
13.
go back to reference Kuzmin, D., Löhner, R., Turek, S.: Flux–Corrected Transport. Scientific Computation. Springer, ISBN: 3-540-23730-5 (2005) Kuzmin, D., Löhner, R., Turek, S.: Flux–Corrected Transport. Scientific Computation. Springer, ISBN: 3-540-23730-5 (2005)
15.
go back to reference Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)MathSciNetCrossRefMATH Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)MathSciNetCrossRefMATH
16.
go back to reference Leer, V.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14, 361–370 (1974)CrossRefMATH Leer, V.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14, 361–370 (1974)CrossRefMATH
17.
go back to reference Mehmetoglu, O., Popov, B.: Maximum principle and convergence of central schemes based on slope limiters. Math. Comput. 81(277), 219–231 (2012)MathSciNetCrossRefMATH Mehmetoglu, O., Popov, B.: Maximum principle and convergence of central schemes based on slope limiters. Math. Comput. 81(277), 219–231 (2012)MathSciNetCrossRefMATH
18.
go back to reference Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)MathSciNetCrossRefMATH Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)MathSciNetCrossRefMATH
19.
20.
go back to reference Thomée, V., Wahlbin, L .B.: On the existence of maximum principles in parabolic finite element equations. Math. Comput. 77(261), 11–19 (2008). (electronic)MathSciNetCrossRefMATH Thomée, V., Wahlbin, L .B.: On the existence of maximum principles in parabolic finite element equations. Math. Comput. 77(261), 11–19 (2008). (electronic)MathSciNetCrossRefMATH
21.
go back to reference Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011)MathSciNetCrossRefMATH
Metadata
Title
The Effect of the Consistent Mass Matrix on the Maximum-Principle for Scalar Conservation Equations
Authors
Jean-Luc Guermond
Bojan Popov
Yong Yang
Publication date
17-09-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2017
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0285-7

Other articles of this Issue 3/2017

Journal of Scientific Computing 3/2017 Go to the issue

Premium Partner