Skip to main content
Top
Published in: Polymer Science, Series D 2/2023

01-06-2023

The Effect of the Nature of Biodegradable Components on Biodegradability of Composites Based on Polyethylene

Authors: I. A. Varyan, M. V. Podzorova, Yu. V. Tertyshnaya, N. N. Kolesnikova, A. A. Popov

Published in: Polymer Science, Series D | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The introduction of biodegradable additives into the matrix of synthetic polymers allows one to develop environmentally friendly materials with increased biodegradability. In this paper, composite films based on low-density polyethylene with natural rubber at a content of 10–30 wt % are studied. A mycological test with fungi and field test of soil have shown that the composite with the addition of natural rubber in the amount of 30 wt % is the most biodegradable (mass loss is comprised 7.2 wt % in 90 days). In the experiment on biodegradation in soil, the most intensive development of filamentous fungi has been recorded in field tests. A study has been also conducted of compositions with the addition of polylactide, which belongs to biodegradable polymers. When exposed to soil, a different character of the destruction of the material is noted, mainly due to hydrolysis. Thus, depending on the nature of biodegradable polymer additives, operational characteristics and biodegradation in the soil change.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. H. Lee, I. Y. Kim, and W. S. Song, “Biodegradation of polylactic acid (PLA) fibers using different enzymes,” Macromol. Res. 22 (6), 657–663 (2014).CrossRef S. H. Lee, I. Y. Kim, and W. S. Song, “Biodegradation of polylactic acid (PLA) fibers using different enzymes,” Macromol. Res. 22 (6), 657–663 (2014).CrossRef
2.
go back to reference Sh. Li, Ch. Wang, X. Zhuang, et al., “Renewable resource-based composites of acorn powder and polylactide bio-plastic: preparation and properties evaluation,” J. Polym. Environ. 19, 301–311 (2011).CrossRef Sh. Li, Ch. Wang, X. Zhuang, et al., “Renewable resource-based composites of acorn powder and polylactide bio-plastic: preparation and properties evaluation,” J. Polym. Environ. 19, 301–311 (2011).CrossRef
3.
go back to reference Y. Tertyshnaya, N. Levina, and A. Popov, “Hydrolytic destruction of agrofiber made of natural polymers,” Fibre Chem. 51, 117–120 (2019).CrossRef Y. Tertyshnaya, N. Levina, and A. Popov, “Hydrolytic destruction of agrofiber made of natural polymers,” Fibre Chem. 51, 117–120 (2019).CrossRef
4.
go back to reference E. E. Mastalygina, I. A. Varyan, N. N. Kolesnikova, and A. A. Popov, “Structural changes in the low-density polyethylene/natural rubber composites in the aqueous and soil media,” AIP Conf. Proc. 1736, 020097 (2016).CrossRef E. E. Mastalygina, I. A. Varyan, N. N. Kolesnikova, and A. A. Popov, “Structural changes in the low-density polyethylene/natural rubber composites in the aqueous and soil media,” AIP Conf. Proc. 1736, 020097 (2016).CrossRef
5.
go back to reference M. V. Podzorova and Y. V. Tertyshnaya, “Thermal and thermooxidative degradation of blends based on polylactide and polyethylene,” Russ. Metall. (Metally) 2020, 1182–1185 (2020).CrossRef M. V. Podzorova and Y. V. Tertyshnaya, “Thermal and thermooxidative degradation of blends based on polylactide and polyethylene,” Russ. Metall. (Metally) 2020, 1182–1185 (2020).CrossRef
6.
go back to reference S. E. Fenni, J. Wang, N. Haddaoui, et al., “Crystallization and self-nucleation of PLA, PBS and PCL in their immiscible binary and ternary blends,” Thermochim. Acta 677, 117–130 (2019).CrossRef S. E. Fenni, J. Wang, N. Haddaoui, et al., “Crystallization and self-nucleation of PLA, PBS and PCL in their immiscible binary and ternary blends,” Thermochim. Acta 677, 117–130 (2019).CrossRef
7.
go back to reference K. Fukushima, D. Tabuanib, C. Abbatec, et al., “Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone,” Polym. Degrad. Stab. 95, 2049–2056 (2010).CrossRef K. Fukushima, D. Tabuanib, C. Abbatec, et al., “Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone,” Polym. Degrad. Stab. 95, 2049–2056 (2010).CrossRef
8.
go back to reference R. M. Rasal, A. V. Janorkar, and D. E. Hirt, “Poly(lactic acid) modifications,” Prog. Polym. Sci. 35, 338–356 (2010).CrossRef R. M. Rasal, A. V. Janorkar, and D. E. Hirt, “Poly(lactic acid) modifications,” Prog. Polym. Sci. 35, 338–356 (2010).CrossRef
9.
go back to reference B. J. Zyska, “Microbial deterioration of rubber,” Biodeter. 7, 535–552 (1988).CrossRef B. J. Zyska, “Microbial deterioration of rubber,” Biodeter. 7, 535–552 (1988).CrossRef
10.
go back to reference D. Kwiatkowska and B. J. Zyska, “Changes in natural rubber vulcanizates due to microbial degradation,” Biodeterioration 7, 575–579 (1988).CrossRef D. Kwiatkowska and B. J. Zyska, “Changes in natural rubber vulcanizates due to microbial degradation,” Biodeterioration 7, 575–579 (1988).CrossRef
11.
go back to reference S. Imai, K. Ichikawa, Y. Muramatsu, et al., “Isolation and characterization of streptomyces, actinoplanes, and methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene),” Enzyme Microb. Technol. 49, 526–531 (2011).CrossRefPubMed S. Imai, K. Ichikawa, Y. Muramatsu, et al., “Isolation and characterization of streptomyces, actinoplanes, and methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene),” Enzyme Microb. Technol. 49, 526–531 (2011).CrossRefPubMed
12.
go back to reference I. A. Varyan, E. E. Mastalygina, N. N. Kolesnikova, et al., “Analysis of stress-strain characteristics of composite films based on polyethylene polymers with natural rubber,” AIP Conf. Proc. 1909, 020226 (2017).CrossRef I. A. Varyan, E. E. Mastalygina, N. N. Kolesnikova, et al., “Analysis of stress-strain characteristics of composite films based on polyethylene polymers with natural rubber,” AIP Conf. Proc. 1909, 020226 (2017).CrossRef
13.
go back to reference I. A. Varyan, E. E. Mastalygina, N. N. Kolesnikova, and A. A. Popov, “Impact of natural rubber on biological fouling and degradation of polyethylene composites,” AIP Conf. Proc. 1981, 020119 (2018).CrossRef I. A. Varyan, E. E. Mastalygina, N. N. Kolesnikova, and A. A. Popov, “Impact of natural rubber on biological fouling and degradation of polyethylene composites,” AIP Conf. Proc. 1981, 020119 (2018).CrossRef
14.
go back to reference H. Pranamuda, Y. Tokiwa, and H. Tanaka, “Microbial degradation of an aliphatic polyester with a high melting point, poly(tetramethylene succinate),” Appl. Environ. Microbiol. 61, 1828–1832 (1995).CrossRefPubMedPubMedCentral H. Pranamuda, Y. Tokiwa, and H. Tanaka, “Microbial degradation of an aliphatic polyester with a high melting point, poly(tetramethylene succinate),” Appl. Environ. Microbiol. 61, 1828–1832 (1995).CrossRefPubMedPubMedCentral
15.
go back to reference P. Gegenwart, Y. Tokiwa, J. Custers, et al., “Magnetic properties close to the quantum critical point in YbRh 2Si2,” J. Phys. Soc. Japan 75, 155–159 (2006).CrossRef P. Gegenwart, Y. Tokiwa, J. Custers, et al., “Magnetic properties close to the quantum critical point in YbRh 2Si2,” J. Phys. Soc. Japan 75, 155–159 (2006).CrossRef
16.
go back to reference T. Ohkita and S. H. Lee, “Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites,” J. Appl. Polym. Sci. 100, 3009–3017 (2006).CrossRef T. Ohkita and S. H. Lee, “Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites,” J. Appl. Polym. Sci. 100, 3009–3017 (2006).CrossRef
17.
go back to reference Yu. Tertyshnaya, M. Podzorova, and M. Moskovskiy, “Impact of water and UV irradiation on nonwoven polylactide/natural rubber fiber,” Polymers 13, 461 (2021).CrossRefPubMedPubMedCentral Yu. Tertyshnaya, M. Podzorova, and M. Moskovskiy, “Impact of water and UV irradiation on nonwoven polylactide/natural rubber fiber,” Polymers 13, 461 (2021).CrossRefPubMedPubMedCentral
18.
go back to reference M. V. Podzorova and Yu. V. Tertyshnaya, “Degradation of polylactide-polyethylene binary blends in soil,” Russ. J. Appl. Chem. 92, 767–774 (2019).CrossRef M. V. Podzorova and Yu. V. Tertyshnaya, “Degradation of polylactide-polyethylene binary blends in soil,” Russ. J. Appl. Chem. 92, 767–774 (2019).CrossRef
19.
20.
go back to reference Y. Tokiwa and B. P. Calabia, “Biodegradability and biodegradation of polyesters,” J. Polym. Environ. 15, 259–267 (2007).CrossRef Y. Tokiwa and B. P. Calabia, “Biodegradability and biodegradation of polyesters,” J. Polym. Environ. 15, 259–267 (2007).CrossRef
21.
go back to reference H. J. Jeon, M. N. Kim, and H. J. Jeon, “Biodegradation of poly(l-lactide) (pla) exposed to UV irradiation by a mesophilic bacterium,” Int. Biodeter. Biodegrad. 85, 289–293 (2013).CrossRef H. J. Jeon, M. N. Kim, and H. J. Jeon, “Biodegradation of poly(l-lactide) (pla) exposed to UV irradiation by a mesophilic bacterium,” Int. Biodeter. Biodegrad. 85, 289–293 (2013).CrossRef
22.
go back to reference L.-T. Lim, R. Auras, and M. Rubino, “Processing technologies for poly(lactic acid),” Prog. Polym. Sci. 33, 820–852 (2009).CrossRef L.-T. Lim, R. Auras, and M. Rubino, “Processing technologies for poly(lactic acid),” Prog. Polym. Sci. 33, 820–852 (2009).CrossRef
23.
go back to reference M. V. Podzorova and Yu. V. Tertyshnaya, “Degradation of polylactide-polyethylene binary blends in soil,” Russ. J. Appl. Chem. 92, 767–774 (2019).CrossRef M. V. Podzorova and Yu. V. Tertyshnaya, “Degradation of polylactide-polyethylene binary blends in soil,” Russ. J. Appl. Chem. 92, 767–774 (2019).CrossRef
25.
go back to reference S. Imai, K. Ichikawa, Y. Muramatsu, et al., “Isolation and characterization of streptomyces, actinoplanes, and methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4- isoprene),” Enzyme Microbiol. Technol. 49, 526–531 (2011).CrossRef S. Imai, K. Ichikawa, Y. Muramatsu, et al., “Isolation and characterization of streptomyces, actinoplanes, and methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4- isoprene),” Enzyme Microbiol. Technol. 49, 526–531 (2011).CrossRef
26.
go back to reference H. B. Bode, K. Kerkho, and D. Jendrossek, “Bacterial degradation of natural and synthetic rubber,” Biomacromol. 2, 295–303 (2001).CrossRef H. B. Bode, K. Kerkho, and D. Jendrossek, “Bacterial degradation of natural and synthetic rubber,” Biomacromol. 2, 295–303 (2001).CrossRef
27.
go back to reference K. Rose and A. Steinbuchel, “Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms,” Appl. Environ. Microbiol. 71, 2803–2812 (2005).CrossRefPubMedPubMedCentral K. Rose and A. Steinbuchel, “Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms,” Appl. Environ. Microbiol. 71, 2803–2812 (2005).CrossRefPubMedPubMedCentral
28.
go back to reference K. Rose, K. B. Tenberge, and A. Steinbuchel, “Identification and characterization of genes from Streptomyces S P. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation,” Biomacromol. 6, 180–188 (2005).CrossRef K. Rose, K. B. Tenberge, and A. Steinbuchel, “Identification and characterization of genes from Streptomyces S P. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation,” Biomacromol. 6, 180–188 (2005).CrossRef
29.
go back to reference B. P. Calabia, Y. Tokiwa, C. U. Ugwu, and S. Aiba, “Biodegradation,” in Poly(lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, Ed. by R. A. Auras, L. T. Lim, S. E. M. Selke, and H. Tsuji (Wiley, New Jersey, USA, 2010). B. P. Calabia, Y. Tokiwa, C. U. Ugwu, and S. Aiba, “Biodegradation,” in Poly(lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, Ed. by R. A. Auras, L. T. Lim, S. E. M. Selke, and H. Tsuji (Wiley, New Jersey, USA, 2010).
30.
go back to reference M. Karamanlioglu and G. D. Robson, “The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil,” Polym. Degrad. Stab. 98, 2063–2071 (2013).CrossRef M. Karamanlioglu and G. D. Robson, “The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil,” Polym. Degrad. Stab. 98, 2063–2071 (2013).CrossRef
31.
go back to reference L. Santonja-Blasco, A. Ribes-Greus, and R. G. Alamo, “Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates,” Polym. Degrad. Stab. 98, 771–784 (2013).CrossRef L. Santonja-Blasco, A. Ribes-Greus, and R. G. Alamo, “Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates,” Polym. Degrad. Stab. 98, 771–784 (2013).CrossRef
32.
go back to reference M. V. Podzorova and Yu. V. Tertyshnaya, “Degradation of polylactide—polyethylene binary blends in soil,” Russ. J. Appl. Chem. 92, 767—774 (2019).CrossRef M. V. Podzorova and Yu. V. Tertyshnaya, “Degradation of polylactide—polyethylene binary blends in soil,” Russ. J. Appl. Chem. 92, 767—774 (2019).CrossRef
33.
go back to reference I. A. Var’yan, N. N. Kolesnikova, and A. A. Popov, “Biodegradation of blends of low-density polyethylene with natural rubber in soil,” Russ. J. Phys. Chem. 15, 1041—1045 (2021).CrossRef I. A. Var’yan, N. N. Kolesnikova, and A. A. Popov, “Biodegradation of blends of low-density polyethylene with natural rubber in soil,” Russ. J. Phys. Chem. 15, 1041—1045 (2021).CrossRef
Metadata
Title
The Effect of the Nature of Biodegradable Components on Biodegradability of Composites Based on Polyethylene
Authors
I. A. Varyan
M. V. Podzorova
Yu. V. Tertyshnaya
N. N. Kolesnikova
A. A. Popov
Publication date
01-06-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 2/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223020466

Other articles of this Issue 2/2023

Polymer Science, Series D 2/2023 Go to the issue

Premium Partners