Skip to main content
Top
Published in: Journal of Materials Science 18/2020

27-03-2020 | Energy materials

The effect of thermal oxidation on the coefficient of thermal expansion of nuclear graphite

Authors: Xiong Yang, Xue Wang, D. K. L. Tsang

Published in: Journal of Materials Science | Issue 18/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nuclear graphite has been used in nuclear reactors for almost 80 years, its material behavior after oxidation and irradiation is still not fully understood. In this paper, an old question of why the oxidation has a considerable effect on Young’s modulus but not on the coefficient of thermal expansion (CTE) is tried to be answered. The multi-scale finite-element method was used to analyze CTE dependence on various porosities, pore shape ratios and pore arrangements. The numerical results suggested that these factors have no significant influence on the CTE. Three different types of nuclear graphite samples were thermally oxidized at 525 °C. The microstructures of the graphite samples before and after oxidation were observed by using a laser scanning confocal microscope. The changes in sample volume, weight loss and CTE were measured after each oxidation period. The experimental results suggested that thermal oxidation at 525 °C was controlled by the in-pore diffusion-controlled regime and weight losses of up to 30% had no significant influence on CTE.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zheng G, Xu P, Sridharan K et al (2014) Characterization of structural defects in nuclear graphite IG-110 and NBG-18. J Nucl Mater 446(1–3):193–199CrossRef Zheng G, Xu P, Sridharan K et al (2014) Characterization of structural defects in nuclear graphite IG-110 and NBG-18. J Nucl Mater 446(1–3):193–199CrossRef
2.
go back to reference Yang X, Gao Y, Zhong Y et al (2018) Stress analysis of the TMSR graphite component under irradiation conditions. Nucl Sci Tech 29(12):129–137CrossRef Yang X, Gao Y, Zhong Y et al (2018) Stress analysis of the TMSR graphite component under irradiation conditions. Nucl Sci Tech 29(12):129–137CrossRef
3.
go back to reference Berre C, Fok SL, Marsden BJ et al (2006) Numerical modelling of the effects of porosity changes on the mechanical properties of nuclear graphite. J Nucl Mater 352:1–5CrossRef Berre C, Fok SL, Marsden BJ et al (2006) Numerical modelling of the effects of porosity changes on the mechanical properties of nuclear graphite. J Nucl Mater 352:1–5CrossRef
4.
go back to reference Matsuo H, Saito T, Sasaki Y (1981) Effects of high temperature neutron irradiation on dimension and thermal expansion coefficient of nuclear grade graphites. J Nucl Sci Technol 18(11):863–869CrossRef Matsuo H, Saito T, Sasaki Y (1981) Effects of high temperature neutron irradiation on dimension and thermal expansion coefficient of nuclear grade graphites. J Nucl Sci Technol 18(11):863–869CrossRef
5.
go back to reference Klimenkov VI (1962) Behavior of graphite in nuclear reactor stacks. Soviet J Atomic Energy 10(5):439–450CrossRef Klimenkov VI (1962) Behavior of graphite in nuclear reactor stacks. Soviet J Atomic Energy 10(5):439–450CrossRef
6.
go back to reference Marsden BJ, Haverty M, Bodel W et al (2016) Dimensional change, irradiation creep and thermal/mechanical property changes in nuclear graphite. Int Mater Rev 61(3):155–182CrossRef Marsden BJ, Haverty M, Bodel W et al (2016) Dimensional change, irradiation creep and thermal/mechanical property changes in nuclear graphite. Int Mater Rev 61(3):155–182CrossRef
7.
go back to reference Mironov BE, Freeman HM, Brown AP et al (2015) Electron irradiation of nuclear graphite studied by transmission electron microscopy and electron energy loss spectroscopy. Carbon 83:106–117CrossRef Mironov BE, Freeman HM, Brown AP et al (2015) Electron irradiation of nuclear graphite studied by transmission electron microscopy and electron energy loss spectroscopy. Carbon 83:106–117CrossRef
8.
go back to reference Nemeth N, Walker A, Baker E et al (2013) Large-scale Weibull analysis of H-451 nuclear-grade graphite rupture strength. Carbon 58:208–225CrossRef Nemeth N, Walker A, Baker E et al (2013) Large-scale Weibull analysis of H-451 nuclear-grade graphite rupture strength. Carbon 58:208–225CrossRef
9.
go back to reference Tempest PA (1981) A model to describe the irradiation-induced dimensional changes in polycrystalline graphites and carbons. J Nucl Mater 97(3):225–230CrossRef Tempest PA (1981) A model to describe the irradiation-induced dimensional changes in polycrystalline graphites and carbons. J Nucl Mater 97(3):225–230CrossRef
10.
go back to reference Vertyagina Y, Marrow TJ (2016) Multifractal-based assessment of Gilsocarbon graphite microstructures. Carbon 109:711–718CrossRef Vertyagina Y, Marrow TJ (2016) Multifractal-based assessment of Gilsocarbon graphite microstructures. Carbon 109:711–718CrossRef
11.
go back to reference Tsang DKL, Marsden BJ (2006) The development of a stress analysis code for nuclear graphite components in gas-cooled reactors. J Nucl Mater 350(3):208–220CrossRef Tsang DKL, Marsden BJ (2006) The development of a stress analysis code for nuclear graphite components in gas-cooled reactors. J Nucl Mater 350(3):208–220CrossRef
12.
go back to reference Moormann R, Hinssen HK, Kerstin K (2004) Oxidation behaviour of an HTR fuel element matrix graphite in oxygen compared to a standard nuclear graphite. Nucl Eng Des 227(3):281–284CrossRef Moormann R, Hinssen HK, Kerstin K (2004) Oxidation behaviour of an HTR fuel element matrix graphite in oxygen compared to a standard nuclear graphite. Nucl Eng Des 227(3):281–284CrossRef
13.
go back to reference Olasov LR, Zeng FW, Spicer JB et al (2019) Modeling the effects of oxidation-induced porosity on the elastic moduli of nuclear graphites. Carbon 2019(141):304–315CrossRef Olasov LR, Zeng FW, Spicer JB et al (2019) Modeling the effects of oxidation-induced porosity on the elastic moduli of nuclear graphites. Carbon 2019(141):304–315CrossRef
14.
go back to reference Slagle OD (1967) The accommodation of c-Axis thermal expansion in polycrystalline graphite. J Appl Phys 38(4):1993–1994CrossRef Slagle OD (1967) The accommodation of c-Axis thermal expansion in polycrystalline graphite. J Appl Phys 38(4):1993–1994CrossRef
15.
go back to reference Ammar MR, Galy N, Rouzaud JN et al (2015) Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing. Carbon 95:364–373CrossRef Ammar MR, Galy N, Rouzaud JN et al (2015) Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing. Carbon 95:364–373CrossRef
16.
go back to reference Burchell TD, Pickup IM, Mcenaney B et al (1986) The relationship between microstructure and the reduction of elastic modulus in thermally and radiolytically corroded nuclear graphites. Carbon 24(5):545–549CrossRef Burchell TD, Pickup IM, Mcenaney B et al (1986) The relationship between microstructure and the reduction of elastic modulus in thermally and radiolytically corroded nuclear graphites. Carbon 24(5):545–549CrossRef
17.
go back to reference Kim ES, Hee CNO (2006) Experimental study on the oxidation of nuclear graphite and development of an oxidation model. J Nucl Mater 349(1):182–194CrossRef Kim ES, Hee CNO (2006) Experimental study on the oxidation of nuclear graphite and development of an oxidation model. J Nucl Mater 349(1):182–194CrossRef
18.
go back to reference Kelly BT (1985) The radiolytic corrosion of advanced gas-cooled reactor graphite. Prog Nucl Energy 16(1):73–96CrossRef Kelly BT (1985) The radiolytic corrosion of advanced gas-cooled reactor graphite. Prog Nucl Energy 16(1):73–96CrossRef
19.
go back to reference Charles F (2005) The advanced High-Temperature Reactor: High-temperature fuel, liquid salt coolant, liquid-metal-reactor plant. Prog Nucl Energy 47(1–4):32–43 Charles F (2005) The advanced High-Temperature Reactor: High-temperature fuel, liquid salt coolant, liquid-metal-reactor plant. Prog Nucl Energy 47(1–4):32–43
20.
go back to reference Khokhlov V, Ignatiev V, Afonichkin V (2009) Evaluating physical properties of molten salt reactor fluoride mixtures. J Fluor Chem 130(1):30–37CrossRef Khokhlov V, Ignatiev V, Afonichkin V (2009) Evaluating physical properties of molten salt reactor fluoride mixtures. J Fluor Chem 130(1):30–37CrossRef
21.
go back to reference Brocklehurst JE, Brown RG, Gilchrist KE et al (1970) The effect of radiolytic oxidation on the physical properties of graphite. J Nucl Mater 35(2):183–194CrossRef Brocklehurst JE, Brown RG, Gilchrist KE et al (1970) The effect of radiolytic oxidation on the physical properties of graphite. J Nucl Mater 35(2):183–194CrossRef
22.
go back to reference Kaxiras E, Pandey KC (1988) Energetics of defects and diffusion mechanisms in graphite. Phys Rev Lett 61(23):2693CrossRef Kaxiras E, Pandey KC (1988) Energetics of defects and diffusion mechanisms in graphite. Phys Rev Lett 61(23):2693CrossRef
23.
go back to reference Kelly BT (1982) Graphite—the most fascinating nuclear material. Carbon 20(1):3–11CrossRef Kelly BT (1982) Graphite—the most fascinating nuclear material. Carbon 20(1):3–11CrossRef
24.
go back to reference Katscher W, Moormann R, Verfondern K et al (1990) Fission product behaviour and graphite corrosion under accident conditions in the HTR. Nucl Eng Des 121(2):219–225CrossRef Katscher W, Moormann R, Verfondern K et al (1990) Fission product behaviour and graphite corrosion under accident conditions in the HTR. Nucl Eng Des 121(2):219–225CrossRef
25.
go back to reference Hawtin P, Gibsonn JA, Murdoch R et al (1964) The effect of diffusion and bulk gas flow on the thermal oxidation of nuclear graphite-I. Temperatures below 500°C. Carbon 2(3):299–309CrossRef Hawtin P, Gibsonn JA, Murdoch R et al (1964) The effect of diffusion and bulk gas flow on the thermal oxidation of nuclear graphite-I. Temperatures below 500°C. Carbon 2(3):299–309CrossRef
26.
go back to reference Luo X, Robin JC, Yu S (2004) Effect of temperature on graphite oxidation behavior. Nucl Eng Des 227(3):273–280CrossRef Luo X, Robin JC, Yu S (2004) Effect of temperature on graphite oxidation behavior. Nucl Eng Des 227(3):273–280CrossRef
27.
go back to reference El-Genk MS, Tournier J-MP (2012) Comparison of oxidation model predictions with gasification data of IG-110, IG-430 and NBG-25 nuclear graphite. J Nucl Mater 420(1–3):141–158CrossRef El-Genk MS, Tournier J-MP (2012) Comparison of oxidation model predictions with gasification data of IG-110, IG-430 and NBG-25 nuclear graphite. J Nucl Mater 420(1–3):141–158CrossRef
28.
go back to reference Johnson PAV, Blanchard A, Kelly BT (1982) Theory of the effect of radiolytic oxidation in carbon dioxide on the transport of gases through graphite. Carbon 20(2):141 Johnson PAV, Blanchard A, Kelly BT (1982) Theory of the effect of radiolytic oxidation in carbon dioxide on the transport of gases through graphite. Carbon 20(2):141
29.
go back to reference Nelson JB, Riley DP (2002) The thermal expansion of graphite from 15°C to 800°C: part I. Experimental. Proc Phys Soc 57(6):477CrossRef Nelson JB, Riley DP (2002) The thermal expansion of graphite from 15°C to 800°C: part I. Experimental. Proc Phys Soc 57(6):477CrossRef
30.
go back to reference Morgan WC (1972) Thermal expansion coefficients of graphite crystals. Carbon 10(1):73–79CrossRef Morgan WC (1972) Thermal expansion coefficients of graphite crystals. Carbon 10(1):73–79CrossRef
31.
go back to reference Gulans A, Krasheninnikov AV, Puska MJ et al (2011) Bound and free self-interstitial defects in graphite and bilayer graphene: a computational study. Phys Rev B 84(2):024114CrossRef Gulans A, Krasheninnikov AV, Puska MJ et al (2011) Bound and free self-interstitial defects in graphite and bilayer graphene: a computational study. Phys Rev B 84(2):024114CrossRef
32.
go back to reference Wang H, Zhou X, Su L et al (2009) The effect of stress levels on the coefficient of thermal expansion of a fine-grained isotropic nuclear graphite. Nucl Eng Des 239(3):484–489CrossRef Wang H, Zhou X, Su L et al (2009) The effect of stress levels on the coefficient of thermal expansion of a fine-grained isotropic nuclear graphite. Nucl Eng Des 239(3):484–489CrossRef
33.
go back to reference Kelly BT (1981) Physics of graphite, vol 13. Applied Science Publishers, London Kelly BT (1981) Physics of graphite, vol 13. Applied Science Publishers, London
34.
go back to reference Hacker PJ, Neighbour GB, Mcenaney B (2000) The coefficient of thermal expansion of nuclear graphite with increasing thermal oxidation. J Phys D Appl Phys 33(8):991CrossRef Hacker PJ, Neighbour GB, Mcenaney B (2000) The coefficient of thermal expansion of nuclear graphite with increasing thermal oxidation. J Phys D Appl Phys 33(8):991CrossRef
35.
go back to reference Wen KY, Marrow TJ, Marsden BJ (2008) The microstructure of nuclear graphite binders. Carbon 46(1):62–71CrossRef Wen KY, Marrow TJ, Marsden BJ (2008) The microstructure of nuclear graphite binders. Carbon 46(1):62–71CrossRef
36.
go back to reference Sutton AL, Howard VC (1962) Role of porosity in the accommodation of thermal expansion in graphite. Carbon 7(3):367–368CrossRef Sutton AL, Howard VC (1962) Role of porosity in the accommodation of thermal expansion in graphite. Carbon 7(3):367–368CrossRef
37.
go back to reference Wen K, Marrow J, Marsden B (2008) Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG). J Nucl Mater 381(1–2):199–203CrossRef Wen K, Marrow J, Marsden B (2008) Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG). J Nucl Mater 381(1–2):199–203CrossRef
38.
go back to reference Mileeva Z, Ross DK, King SM (2013) A study of the porosity of nuclear graphite using small-angle neutron scattering. Carbon 64(9):20–26CrossRef Mileeva Z, Ross DK, King SM (2013) A study of the porosity of nuclear graphite using small-angle neutron scattering. Carbon 64(9):20–26CrossRef
39.
go back to reference Laudone GM, Gribble CM, Matthews GP (2014) Characterisation of the porous structure of gilsocarbon graphite using pycnometry, cyclic porosimetry and void-network modeling. Carbon 73:61–70CrossRef Laudone GM, Gribble CM, Matthews GP (2014) Characterisation of the porous structure of gilsocarbon graphite using pycnometry, cyclic porosimetry and void-network modeling. Carbon 73:61–70CrossRef
40.
go back to reference Karthik C, Kane J, Butt DP et al (2012) Microstructural characterization of next generation nuclear graphites. Microsc Microanal 18(2):272–278CrossRef Karthik C, Kane J, Butt DP et al (2012) Microstructural characterization of next generation nuclear graphites. Microsc Microanal 18(2):272–278CrossRef
41.
go back to reference Hall G, Marsden BJ, Fok SL (2006) The microstructural modelling of nuclear grade graphite. J Nucl Mater 353(1–2):12–18CrossRef Hall G, Marsden BJ, Fok SL (2006) The microstructural modelling of nuclear grade graphite. J Nucl Mater 353(1–2):12–18CrossRef
43.
go back to reference Tsang DKL, Marsden BJ, Fok SL et al (2005) Graphite thermal expansion relationship for different temperature ranges. Carbon 2005(43):2902–2906CrossRef Tsang DKL, Marsden BJ, Fok SL et al (2005) Graphite thermal expansion relationship for different temperature ranges. Carbon 2005(43):2902–2906CrossRef
44.
go back to reference Knudsen FP (2010) Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J Am Ceram Soc 42(8):376–387CrossRef Knudsen FP (2010) Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J Am Ceram Soc 42(8):376–387CrossRef
45.
go back to reference Contescu CI, Guldan T, Wang P et al (2012) The effect of microstructure on air oxidation resistance of nuclear graphite. Carbon 50(9):3354–3366CrossRef Contescu CI, Guldan T, Wang P et al (2012) The effect of microstructure on air oxidation resistance of nuclear graphite. Carbon 50(9):3354–3366CrossRef
46.
go back to reference Choi WK, Kim BJ, Kim ES et al (2011) Oxidation behavior of IG and NBG nuclear graphites. Nucl Eng Des 241(1):82–87CrossRef Choi WK, Kim BJ, Kim ES et al (2011) Oxidation behavior of IG and NBG nuclear graphites. Nucl Eng Des 241(1):82–87CrossRef
47.
go back to reference Liu D, Gludovatz B, Barnard HS et al (2017) Damage tolerance of nuclear graphite at elevated temperatures. Nature communications 8:15942CrossRef Liu D, Gludovatz B, Barnard HS et al (2017) Damage tolerance of nuclear graphite at elevated temperatures. Nature communications 8:15942CrossRef
Metadata
Title
The effect of thermal oxidation on the coefficient of thermal expansion of nuclear graphite
Authors
Xiong Yang
Xue Wang
D. K. L. Tsang
Publication date
27-03-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04577-8

Other articles of this Issue 18/2020

Journal of Materials Science 18/2020 Go to the issue

Premium Partners