Skip to main content
Top
Published in: Wireless Networks 5/2019

13-02-2018

The effects of channel knowledge on cooperative spectrum sensing in Nakagami-n/q fading channels

Authors: Srinivas Nallagonda, Aniruddha Chandra, Sanjay Dhar Roy, Sumit Kundu

Published in: Wireless Networks | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cooperative spectrum sensing (CSS) is an efficient method to detect vacant spectrum of a primary user (PU) by combining sensing information of multiple cognitive radios (CRs) in presence of fading. In this paper, effects of perfect and imperfect channel state information (CSI) on CSS network is evaluated. The proposed network is operated over Nakagami-q (Hoyt) and Nakagami-n (Rician) fading affecting both reporting (R) and sensing (S) channels. The CRs which employ energy detectors (EDs) are selected on the basis of CSI between them and a fusion center (FC). The knowledge on the quality of R-channels is estimated at FC using a channel estimator. The estimated CSI is either perfect when there is no error in the estimator, or imperfect when errors are present. Accordingly, CRs are selected under both perfect CSI and imperfect CSI cases. All CRs use the decision statistics obtained by EDs and make one-bit binary decisions about the availability of a PU. Selected CRs only transmit decision information to the FC. The miss detection probability and error rate of network under two cases of selection are evaluated by operating majority and maximal ratio combining rules at the FC. Performance is analyzed for different channel and network parameters and comparison between fusion rules for different fading channels is also highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ghasemi, A., & Sousa, E. S. (2007). Opportunistic spectrum access in fading channels through collaborative sensing? IEEE Transactions on Wireless Communications, 2(2), 71–82. Ghasemi, A., & Sousa, E. S. (2007). Opportunistic spectrum access in fading channels through collaborative sensing? IEEE Transactions on Wireless Communications, 2(2), 71–82.
2.
go back to reference Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2016). In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites. International Journal of Satellite Communications and Networking, 34(1), 11–39.CrossRef Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2016). In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites. International Journal of Satellite Communications and Networking, 34(1), 11–39.CrossRef
3.
go back to reference Jacob, P., Rajendra Prasad, S., Madhukumar, A. S., & Prasad, V. A. (2016). Cognitive radio for aeronautical communications: A survey. IEEE Access, 4, 3417–3443.CrossRef Jacob, P., Rajendra Prasad, S., Madhukumar, A. S., & Prasad, V. A. (2016). Cognitive radio for aeronautical communications: A survey. IEEE Access, 4, 3417–3443.CrossRef
4.
go back to reference Nallagonda, S., Chandra, A., Roy, S. D., Kundu, S., Kukolev, P., & Prokes, A. (2016). Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels. International Journal of Electronics, 103(2), 297–321.CrossRef Nallagonda, S., Chandra, A., Roy, S. D., Kundu, S., Kukolev, P., & Prokes, A. (2016). Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels. International Journal of Electronics, 103(2), 297–321.CrossRef
5.
go back to reference Alhamad, R., Wang, H., & Yao, Y.-D. (2017). Cooperative spectrum sensing with random access reporting channels in cognitive radio networks. IEEE Transactions on Vehicular Technology, 66(8), 7249–7261.CrossRef Alhamad, R., Wang, H., & Yao, Y.-D. (2017). Cooperative spectrum sensing with random access reporting channels in cognitive radio networks. IEEE Transactions on Vehicular Technology, 66(8), 7249–7261.CrossRef
6.
go back to reference Lin, Y., He, C., Jiang, L., & He, D. (2011). A censoring cooperative spectrum sensing scheme based on stochastic resonance in cognitive radio. In Proceedings of the IEEE international conference on communications, Kyoto, Japan (pp. 1–5). Lin, Y., He, C., Jiang, L., & He, D. (2011). A censoring cooperative spectrum sensing scheme based on stochastic resonance in cognitive radio. In Proceedings of the IEEE international conference on communications, Kyoto, Japan (pp. 1–5).
7.
go back to reference Kundu, C., Kundu, S., Ferrari, G., & Raheli, R. (2012). Majority logic fusion of censored decisions in wireless sensor networks with Rayleigh fading. In Proceedings of the IEEE national conference on communications (pp. 1–5). Kharagpur, India. Kundu, C., Kundu, S., Ferrari, G., & Raheli, R. (2012). Majority logic fusion of censored decisions in wireless sensor networks with Rayleigh fading. In Proceedings of the IEEE national conference on communications (pp. 1–5). Kharagpur, India.
8.
go back to reference Nallagonda, S., Roy, S. D., & Kundu, S. (2013). Performance evaluation of cooperative spectrum sensing with censoring of cognitive radios in rayleigh fading channel. Wireless Personal Communications, 70(4), 1409–1424.CrossRef Nallagonda, S., Roy, S. D., & Kundu, S. (2013). Performance evaluation of cooperative spectrum sensing with censoring of cognitive radios in rayleigh fading channel. Wireless Personal Communications, 70(4), 1409–1424.CrossRef
9.
go back to reference Verma, P., & Singh, B. (2017). On the decision fusion for cooperative spectrum sensing in cognitive radio networks. Wireless Networks, 23(7), 2253–2262.CrossRef Verma, P., & Singh, B. (2017). On the decision fusion for cooperative spectrum sensing in cognitive radio networks. Wireless Networks, 23(7), 2253–2262.CrossRef
10.
11.
go back to reference Bhowmick, A., Nallagonda, S., Roy, S. D., & Kundu, S. (2015). Cooperative spectrum sensing with double threshold and censoring in Rayleigh faded cognitive radio network. Wireless Personal Communications, 84(1), 251–271.CrossRef Bhowmick, A., Nallagonda, S., Roy, S. D., & Kundu, S. (2015). Cooperative spectrum sensing with double threshold and censoring in Rayleigh faded cognitive radio network. Wireless Personal Communications, 84(1), 251–271.CrossRef
12.
go back to reference Ghavami, S., & Abolhassani, B. (2011). Spectrum sensing and power/rate control in CDMA cognitive radio networks. Interanational Journal of Communication System, 25(2), 121–145.CrossRef Ghavami, S., & Abolhassani, B. (2011). Spectrum sensing and power/rate control in CDMA cognitive radio networks. Interanational Journal of Communication System, 25(2), 121–145.CrossRef
13.
go back to reference Fu, L., Fu, X., Xu, Z., Peng, Q., Wang, X., & Lu, S. (2017). Determining source–destination connectivity in uncertain networks: Modeling and solutions. IEEE/ACM Transactions on Networking, 25(6), 3237–3252.CrossRef Fu, L., Fu, X., Xu, Z., Peng, Q., Wang, X., & Lu, S. (2017). Determining source–destination connectivity in uncertain networks: Modeling and solutions. IEEE/ACM Transactions on Networking, 25(6), 3237–3252.CrossRef
14.
go back to reference Fu, L., Wang, X., & Kumar, P. R. (2016). Are we connected? Optimal determination of source–destination connectivity in random networks. IEEE/ACM Transactions on Networking, 25(2), 751–764.CrossRef Fu, L., Wang, X., & Kumar, P. R. (2016). Are we connected? Optimal determination of source–destination connectivity in random networks. IEEE/ACM Transactions on Networking, 25(2), 751–764.CrossRef
15.
go back to reference Fu, L., Wang, X., & Kumar, P. R. (2014). Optimal determination of source-destination connectivity in random graphs. In Proceedings of the 15th ACM international symposium on mobile ad hoc networking and computing (ACM MobiHoc), Philadelphia, PA, USA (pp. 205–214). Fu, L., Wang, X., & Kumar, P. R. (2014). Optimal determination of source-destination connectivity in random graphs. In Proceedings of the 15th ACM international symposium on mobile ad hoc networking and computing (ACM MobiHoc), Philadelphia, PA, USA (pp. 205–214).
16.
go back to reference Digham, F. F., Alouini, M.-S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 3575–3579.CrossRef Digham, F. F., Alouini, M.-S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 3575–3579.CrossRef
17.
go back to reference Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). San Diego, CA: Academic Press/ Elsevier.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). San Diego, CA: Academic Press/ Elsevier.MATH
18.
19.
go back to reference Simon, M. K., & Alouini, M. S. (2004). Digital communication over fading channels (2nd ed.). Hoboken, NJ: Wiley.CrossRef Simon, M. K., & Alouini, M. S. (2004). Digital communication over fading channels (2nd ed.). Hoboken, NJ: Wiley.CrossRef
20.
go back to reference Chandra, A., Bose, C., & Bose, M. K. (2013). Performance of non-coherent MFSK with selection and switched diversity over Hoyt fading channel. Wireless Personal Communications, 68(2), 379–399.CrossRef Chandra, A., Bose, C., & Bose, M. K. (2013). Performance of non-coherent MFSK with selection and switched diversity over Hoyt fading channel. Wireless Personal Communications, 68(2), 379–399.CrossRef
21.
go back to reference Ahmadi, H. R., & Vosoughi, A. (2009). Channel aware sensor selection in distributed detection systems. In Proceedings of the 10th IEEE workshop on signal processing advances in wireless communications, Perugia, Italy (pp. 71–75). Ahmadi, H. R., & Vosoughi, A. (2009). Channel aware sensor selection in distributed detection systems. In Proceedings of the 10th IEEE workshop on signal processing advances in wireless communications, Perugia, Italy (pp. 71–75).
22.
go back to reference Ahmadi, H. R., & Vosoughi, A. (2013). Impact of wireless channel uncertainty upon distributed detection systems. IEEE Tranasactions on Wireless Communications, 12(6), 2566–2577.CrossRef Ahmadi, H. R., & Vosoughi, A. (2013). Impact of wireless channel uncertainty upon distributed detection systems. IEEE Tranasactions on Wireless Communications, 12(6), 2566–2577.CrossRef
23.
go back to reference Ferrari, G., & Pagliari, R. (2006). Decentralized binary detection with noisy communication links. IEEE Transactions on Aerospace and Electronic Systems, 42(4), 1554–1563.CrossRef Ferrari, G., & Pagliari, R. (2006). Decentralized binary detection with noisy communication links. IEEE Transactions on Aerospace and Electronic Systems, 42(4), 1554–1563.CrossRef
24.
go back to reference Banavathu, N. R., & Khan, M. Z. A. (2015). Optimal \(n\)-out-of-\(K\) voting rule for cooperative spectrum sensing with energy detector over erroneous control channel. In Proceedings of the IEEE international vehicular technology conference (VTC Spring), Glasgow, UK (pp. 1–5). Banavathu, N. R., & Khan, M. Z. A. (2015). Optimal \(n\)-out-of-\(K\) voting rule for cooperative spectrum sensing with energy detector over erroneous control channel. In Proceedings of the IEEE international vehicular technology conference (VTC Spring), Glasgow, UK (pp. 1–5).
Metadata
Title
The effects of channel knowledge on cooperative spectrum sensing in Nakagami-n/q fading channels
Authors
Srinivas Nallagonda
Aniruddha Chandra
Sanjay Dhar Roy
Sumit Kundu
Publication date
13-02-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1685-4

Other articles of this Issue 5/2019

Wireless Networks 5/2019 Go to the issue