Skip to main content
Top
Published in:
Cover of the book

2011 | OriginalPaper | Chapter

The Emperor’s New Body: Seeking for a Blueprint of Limb Regeneration in Humans

Authors : Ilya Digel, Aysegül Temiz Artmann

Published in: Stem Cell Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aspiring to comprehend and control regeneration – the ability to recreate lost or damaged cells, tissues, organs or even limbs – has been the mind-boggling challenge for over 250 years. Regeneration is a common feature in many animal species, whereas its capacity in mammals is notoriously limited. The partial or complete loss of digits or limbs and the deformation of facial injuries profoundly affect the quality of life of the wounded and present a set of challenges for the medical community. This chapter is devoted to some of the problems and prospects of human limb regeneration. It briefly reviews the appearance of regenerative abilities in different tribes across the animal kingdom as well as the genes and cellular signaling pathways involved. Special emphasis is placed upon blastema and scar formation as well as on morphogenetic pattering.
The analysis of evolutionary manifestations of regeneration ability, the apparent relation to the embryonic development mechanisms, as well as consideration of some existing clinical approaches suggest the possibility to “awaken” the regeneration ability in mammals and even in human beings. The ultimate goal of further research will be to identify ways for enhancing the capacity for wound healing and tissue restoration in humans. This would open new exciting prospects for future regenerative medicine.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dinsmore CE. Conceptual foundations of metamorphosis and regeneration: from historical links to common mechanisms. Wound Repair Regen. 1998; 6:291–301.CrossRef Dinsmore CE. Conceptual foundations of metamorphosis and regeneration: from historical links to common mechanisms. Wound Repair Regen. 1998; 6:291–301.CrossRef
2.
go back to reference Trembley A. Mémoires, Pour Servir à l’Histoire d’un Genre de Polypes d’Eau Douce, à Bras en Forme de Cornes. Leiden: Jean and Herman Verbeek; 1744. Trembley A. Mémoires, Pour Servir à l’Histoire d’un Genre de Polypes d’Eau Douce, à Bras en Forme de Cornes. Leiden: Jean and Herman Verbeek; 1744.
3.
go back to reference Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2003; 33:381–394.CrossRef Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2003; 33:381–394.CrossRef
4.
go back to reference Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. 2004; 359:839–850.CrossRef Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. 2004; 359:839–850.CrossRef
5.
go back to reference Frazee O. The effect of electrical stimulation upon the rate of regeneration in Rana pipiens and Ambystoma jeffersonianum. J Exp Zool. 1909; 7:457–475.CrossRef Frazee O. The effect of electrical stimulation upon the rate of regeneration in Rana pipiens and Ambystoma jeffersonianum. J Exp Zool. 1909; 7:457–475.CrossRef
6.
go back to reference Burr HS. The meaning of bioelectric potentials. Yale J Biol Med. 1944; 16:353–360. Burr HS. The meaning of bioelectric potentials. Yale J Biol Med. 1944; 16:353–360.
7.
go back to reference Lund EJ. Bioelectric fields and growth. Austin: University of Texas Press; 1947. Lund EJ. Bioelectric fields and growth. Austin: University of Texas Press; 1947.
8.
go back to reference Becker RO, Spadaro JA. Electrical stimulation of partial limb regeneration in mammals. Bull NY Acad Med. 1972; 48:627–641. Becker RO, Spadaro JA. Electrical stimulation of partial limb regeneration in mammals. Bull NY Acad Med. 1972; 48:627–641.
9.
go back to reference Singer M. Induction of regeneration in the forelimb of post metamorphic frog by augmentation of the nerve supply. J Exp Zool. 1954; 126:419–426.CrossRef Singer M. Induction of regeneration in the forelimb of post metamorphic frog by augmentation of the nerve supply. J Exp Zool. 1954; 126:419–426.CrossRef
10.
go back to reference Polezhaev LV. Regeneration of organs in animals. Usp Sovrem Biol. 1950; 30:258–270. Polezhaev LV. Regeneration of organs in animals. Usp Sovrem Biol. 1950; 30:258–270.
11.
go back to reference Person P, Libbin RM, Shah D, Papierman S. Partial regeneration of the above-elbow amputated rat forelimb. I. Innate responses. J Morphol. 1979; 159:427–438.CrossRef Person P, Libbin RM, Shah D, Papierman S. Partial regeneration of the above-elbow amputated rat forelimb. I. Innate responses. J Morphol. 1979; 159:427–438.CrossRef
12.
go back to reference Godwin JW, Brockes JP. Regeneration, tissue injury and the immune response. J Anat. 2006; 209:423–432.CrossRef Godwin JW, Brockes JP. Regeneration, tissue injury and the immune response. J Anat. 2006; 209:423–432.CrossRef
13.
go back to reference Goss RJ. Prospects of regeneration in man. Clin Orthop Relat Res. 1980; 151:270–282. Goss RJ. Prospects of regeneration in man. Clin Orthop Relat Res. 1980; 151:270–282.
14.
go back to reference Sanchez AA. Regeneration and the need for simpler model organisms. Philos Trans R Soc Lond B Biol Sci. 2004; 359:759–763.CrossRef Sanchez AA. Regeneration and the need for simpler model organisms. Philos Trans R Soc Lond B Biol Sci. 2004; 359:759–763.CrossRef
15.
go back to reference Schaller HC, Hermans-Borgmeyer I, Hoffmeister SA. Neuronal control of development in hydra. Int J Dev Biol. 1996; 40:339–344. Schaller HC, Hermans-Borgmeyer I, Hoffmeister SA. Neuronal control of development in hydra. Int J Dev Biol. 1996; 40:339–344.
16.
go back to reference Hicklin J, Hornbruch A, Wolpert L. Inhibition of hypostome formation and polarity reversal in Hydra. Nature. 1969; 221:1268–1271.CrossRef Hicklin J, Hornbruch A, Wolpert L. Inhibition of hypostome formation and polarity reversal in Hydra. Nature. 1969; 221:1268–1271.CrossRef
17.
go back to reference Meinhardt H, Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci. 1974; 15:321–346. Meinhardt H, Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci. 1974; 15:321–346.
18.
go back to reference MacWilliams HK. Numerical simulations of hydra head regeneration using a proportion-regulating version of the Gierer-Meinhardt model. J Theor Biol. 1982; 99:681–703.CrossRef MacWilliams HK. Numerical simulations of hydra head regeneration using a proportion-regulating version of the Gierer-Meinhardt model. J Theor Biol. 1982; 99:681–703.CrossRef
19.
go back to reference Ando H, Sawada Y, Shimizu H, Sugiyama T. Pattern formation in hydra tissue without developmental gradients. Dev Biol. 1989; 133:405–414.CrossRef Ando H, Sawada Y, Shimizu H, Sugiyama T. Pattern formation in hydra tissue without developmental gradients. Dev Biol. 1989; 133:405–414.CrossRef
20.
go back to reference Brockes JP, Kumar A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol. 2002; 3:566–574.CrossRef Brockes JP, Kumar A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol. 2002; 3:566–574.CrossRef
21.
go back to reference Straube WL, Tanaka EM. Reversibility of the differentiated state: regeneration in amphi-bians. Artif Organs. 2006; 30:743–755.CrossRef Straube WL, Tanaka EM. Reversibility of the differentiated state: regeneration in amphi-bians. Artif Organs. 2006; 30:743–755.CrossRef
22.
go back to reference Stocum DL. Amphibian regeneration and stem cells. Curr Top Microbiol Immunol. 2004; 280:1–70.CrossRef Stocum DL. Amphibian regeneration and stem cells. Curr Top Microbiol Immunol. 2004; 280:1–70.CrossRef
23.
go back to reference Tsonis PA. Bridging knowledge gaps on the long road to regeneration: classical models meet stem cell manipulation and bioengineering. Mol Interv. 2007; 7:249–250.CrossRef Tsonis PA. Bridging knowledge gaps on the long road to regeneration: classical models meet stem cell manipulation and bioengineering. Mol Interv. 2007; 7:249–250.CrossRef
24.
go back to reference Nye HL, Cameron JA, Chernoff EA, Stocum DL. Regeneration of the urodele limb: a review. Dev Dyn. 2003; 226:280–294.CrossRef Nye HL, Cameron JA, Chernoff EA, Stocum DL. Regeneration of the urodele limb: a review. Dev Dyn. 2003; 226:280–294.CrossRef
25.
go back to reference Becker RO. The bioelectric factors in amphibian-limb regeneration. J Bone Joint Surg Am. 1961; 43-A:643–656. Becker RO. The bioelectric factors in amphibian-limb regeneration. J Bone Joint Surg Am. 1961; 43-A:643–656.
26.
go back to reference Christensen RN, Tassava RA. Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. Dev Dyn. 2000; 217:216–224.CrossRef Christensen RN, Tassava RA. Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. Dev Dyn. 2000; 217:216–224.CrossRef
27.
go back to reference Tanaka EM, Gann AA, Gates PB, Brockes JP. Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol. 1997; 136:155–165.CrossRef Tanaka EM, Gann AA, Gates PB, Brockes JP. Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol. 1997; 136:155–165.CrossRef
28.
go back to reference Velloso CP, Kumar A, Tanaka EM, Brockes JP. Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation. 2000; 66:239–246. Velloso CP, Kumar A, Tanaka EM, Brockes JP. Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation. 2000; 66:239–246.
29.
go back to reference Holder N. Organization of connective tissue patterns by dermal fibroblasts in the regenerating axolotl limb. Development. 1989; 105:585–593. Holder N. Organization of connective tissue patterns by dermal fibroblasts in the regenerating axolotl limb. Development. 1989; 105:585–593.
30.
go back to reference Kieny M, Chevallier A. Autonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol. 1979; 49:153–165. Kieny M, Chevallier A. Autonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol. 1979; 49:153–165.
31.
go back to reference Odelberg SJ. Cellular plasticity in vertebrate regeneration. Anat Rec B New Anat. 2005; 287:25–35. Odelberg SJ. Cellular plasticity in vertebrate regeneration. Anat Rec B New Anat. 2005; 287:25–35.
32.
go back to reference Le GF, Rudnicki M. Satellite and stem cells in muscle growth and repair. Development. 2007; 134:3953–3957.CrossRef Le GF, Rudnicki M. Satellite and stem cells in muscle growth and repair. Development. 2007; 134:3953–3957.CrossRef
33.
go back to reference Carlson BM. Some principles of regeneration in mammalian systems. Anat Rec B New Anat. 2005; 287:4–13. Carlson BM. Some principles of regeneration in mammalian systems. Anat Rec B New Anat. 2005; 287:4–13.
34.
go back to reference Polezhaev LV. Methods of regeneration. Sov J Dev Biol. 1975; 5:134–139. Polezhaev LV. Methods of regeneration. Sov J Dev Biol. 1975; 5:134–139.
35.
go back to reference Kierdorf U, Kierdorf H, Szuwart T. Deer antler regeneration: cells, concepts, and controversies. J Morphol. 2007; 268:726–738.CrossRef Kierdorf U, Kierdorf H, Szuwart T. Deer antler regeneration: cells, concepts, and controversies. J Morphol. 2007; 268:726–738.CrossRef
36.
go back to reference Yokoyama H. Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Differ. 2008; 50:13–22.CrossRef Yokoyama H. Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Differ. 2008; 50:13–22.CrossRef
37.
go back to reference Colitti M, Allen SP, Price JS. Programmed cell death in the regenerating deer antler. J Anat. 2005; 207:339–351.CrossRef Colitti M, Allen SP, Price JS. Programmed cell death in the regenerating deer antler. J Anat. 2005; 207:339–351.CrossRef
38.
go back to reference Allen SP, Maden M, Price JS. A role for retinoic acid in regulating the regeneration of deer antlers. Dev Biol. 2002; 251:409–423.CrossRef Allen SP, Maden M, Price JS. A role for retinoic acid in regulating the regeneration of deer antlers. Dev Biol. 2002; 251:409–423.CrossRef
39.
go back to reference Goss AN. Intra-uterine healing of fetal rat oral mucosal, skin and cartilage wounds. J Oral Pathol. 1977; 6:35–43.CrossRef Goss AN. Intra-uterine healing of fetal rat oral mucosal, skin and cartilage wounds. J Oral Pathol. 1977; 6:35–43.CrossRef
40.
go back to reference Goss RJ. The evolution of regeneration: adaptive or inherent? J Theor Biol. 1992; 159:241–260.CrossRef Goss RJ. The evolution of regeneration: adaptive or inherent? J Theor Biol. 1992; 159:241–260.CrossRef
41.
go back to reference Goss RJ, Grimes LN. Epidermal downgrowths in regenerating rabbit ear holes. J Morphol. 1975; 146:533–542.CrossRef Goss RJ, Grimes LN. Epidermal downgrowths in regenerating rabbit ear holes. J Morphol. 1975; 146:533–542.CrossRef
42.
go back to reference Borgens RB. Mice regrow the tips of their foretoes. Science. 1982; 217:747–750.CrossRef Borgens RB. Mice regrow the tips of their foretoes. Science. 1982; 217:747–750.CrossRef
43.
go back to reference Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K. Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat. 2005; 287:14–24. Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K. Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat. 2005; 287:14–24.
44.
go back to reference Tassava RA, Olsen CL. Higher vertebrates do not regenerate digits and legs because the wound epidermis is not functional. A hypothesis. Differentiation. 1982; 22:151–155.CrossRef Tassava RA, Olsen CL. Higher vertebrates do not regenerate digits and legs because the wound epidermis is not functional. A hypothesis. Differentiation. 1982; 22:151–155.CrossRef
45.
go back to reference Murphy ED, Roths JB. A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum. 1979; 22:1188–1194.CrossRef Murphy ED, Roths JB. A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum. 1979; 22:1188–1194.CrossRef
46.
go back to reference Fukuyama H, Adachi M, Suematsu S, Miwa K, Suda T, Yoshida N, Nagata S. Transgenic expression of Fas in T cells blocks lymphoproliferation but not autoimmune disease in MRL-lpr mice. J Immunol. 1998; 160:3805–3811. Fukuyama H, Adachi M, Suematsu S, Miwa K, Suda T, Yoshida N, Nagata S. Transgenic expression of Fas in T cells blocks lymphoproliferation but not autoimmune disease in MRL-lpr mice. J Immunol. 1998; 160:3805–3811.
47.
go back to reference Heber-Katz E. The regenerating mouse ear. Semin Cell Dev Biol. 1999 Aug;10(4): 415–419.CrossRef Heber-Katz E. The regenerating mouse ear. Semin Cell Dev Biol. 1999 Aug;10(4): 415–419.CrossRef
48.
go back to reference Brockes JP, Kumar A. Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol. 2008; 24:525–549.CrossRef Brockes JP, Kumar A. Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol. 2008; 24:525–549.CrossRef
49.
go back to reference Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L. The scarless heart and the MRL mouse. Philos Trans R Soc Lond B Biol Sci. 2004a; 359:785–793.CrossRef Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L. The scarless heart and the MRL mouse. Philos Trans R Soc Lond B Biol Sci. 2004a; 359:785–793.CrossRef
50.
go back to reference Heber-Katz E, Leferovich JM, Bedelbaeva K, Gourevitch D. Spallanzani’s mouse: a model of restoration and regeneration. Curr Top Microbiol Immunol. 2004b; 280:165–189.CrossRef Heber-Katz E, Leferovich JM, Bedelbaeva K, Gourevitch D. Spallanzani’s mouse: a model of restoration and regeneration. Curr Top Microbiol Immunol. 2004b; 280:165–189.CrossRef
51.
go back to reference Cebria F, Guo T, Jopek J, Newmark PA. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev Biol. 2007; 307:394–406.CrossRef Cebria F, Guo T, Jopek J, Newmark PA. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev Biol. 2007; 307:394–406.CrossRef
52.
go back to reference Keating MT. Genetic approaches to disease and regeneration. Philos Trans R Soc Lond B Biol Sci. 2004; 359:795–798.CrossRef Keating MT. Genetic approaches to disease and regeneration. Philos Trans R Soc Lond B Biol Sci. 2004; 359:795–798.CrossRef
53.
go back to reference Tanaka EM. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev. 2003; 13:497–501.CrossRef Tanaka EM. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev. 2003; 13:497–501.CrossRef
54.
go back to reference Poss KD, Keating MT, Nechiporuk A. Tales of regeneration in zebrafish. Dev Dyn. 2003; 226:202–210.CrossRef Poss KD, Keating MT, Nechiporuk A. Tales of regeneration in zebrafish. Dev Dyn. 2003; 226:202–210.CrossRef
55.
go back to reference Bryant SV, Endo T, Gardiner DM. Vertebrate limb regeneration and the origin of limb stem cells. Int J Dev Biol. 2002; 46:887–896. Bryant SV, Endo T, Gardiner DM. Vertebrate limb regeneration and the origin of limb stem cells. Int J Dev Biol. 2002; 46:887–896.
56.
go back to reference Capdevila J, Izpisua Belmonte JC. Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol. 2001; 17:87–132.CrossRef Capdevila J, Izpisua Belmonte JC. Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol. 2001; 17:87–132.CrossRef
57.
go back to reference Nakatani Y, Kawakami A, Kudo A. Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ. 2007; 49:145–154.CrossRef Nakatani Y, Kawakami A, Kudo A. Cellular and molecular processes of regeneration, with special emphasis on fish fins. Dev Growth Differ. 2007; 49:145–154.CrossRef
58.
go back to reference Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006; 281:22429–22433.CrossRef Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006; 281:22429–22433.CrossRef
59.
go back to reference Botchkarev VA, Sharov AA. BMP signaling in the control of skin development and hair follicle growth. Differentiation. 2004; 72:512–526.CrossRef Botchkarev VA, Sharov AA. BMP signaling in the control of skin development and hair follicle growth. Differentiation. 2004; 72:512–526.CrossRef
60.
go back to reference Slack JM, Lin G, Chen Y. The Xenopus tadpole: a new model for regeneration research. Cell Mol Life Sci. 2008; 65:54–63.CrossRef Slack JM, Lin G, Chen Y. The Xenopus tadpole: a new model for regeneration research. Cell Mol Life Sci. 2008; 65:54–63.CrossRef
61.
go back to reference Kawakami Y, Rodriguez EC, Raya M, Kawakami H, Marti M, Dubova I, Izpisua Belmonte JC. Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev. 2006; 20:3232–3237.CrossRef Kawakami Y, Rodriguez EC, Raya M, Kawakami H, Marti M, Dubova I, Izpisua Belmonte JC. Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev. 2006; 20:3232–3237.CrossRef
62.
go back to reference Bayliss PE, Bellavance KL, Whitehead GG, Abrams JM, Aegerter S, Robbins HS, Cowan DB, Keating MT, O’Reilly T, Wood JM, Roberts TM, Chan J. Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol. 2006; 2:265–273.CrossRef Bayliss PE, Bellavance KL, Whitehead GG, Abrams JM, Aegerter S, Robbins HS, Cowan DB, Keating MT, O’Reilly T, Wood JM, Roberts TM, Chan J. Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol. 2006; 2:265–273.CrossRef
63.
go back to reference Mills AA. p63: oncogene or tumor suppressor? Curr Opin Genet Dev. 2006; 16:38–44.CrossRef Mills AA. p63: oncogene or tumor suppressor? Curr Opin Genet Dev. 2006; 16:38–44.CrossRef
64.
go back to reference Echeverri K, Tanaka EM. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science. 2002; 298:1993–1996.CrossRef Echeverri K, Tanaka EM. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science. 2002; 298:1993–1996.CrossRef
65.
go back to reference Casimir CM, Gates PB, Patient RK, Brockes JP. Evidence for dedifferentiation and metaplasia in amphibian limb regeneration from inheritance of DNA methylation. Development. 1988; 104:657–668. Casimir CM, Gates PB, Patient RK, Brockes JP. Evidence for dedifferentiation and metaplasia in amphibian limb regeneration from inheritance of DNA methylation. Development. 1988; 104:657–668.
66.
go back to reference Imokawa Y, Brockes JP. Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr Biol. 2003; 13:877–881.CrossRef Imokawa Y, Brockes JP. Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr Biol. 2003; 13:877–881.CrossRef
67.
go back to reference Imokawa Y, Simon A, Brockes JP. A critical role for thrombin in vertebrate lens regeneration. Philos Trans R Soc Lond B Biol Sci. 2004; 359:765–776.CrossRef Imokawa Y, Simon A, Brockes JP. A critical role for thrombin in vertebrate lens regeneration. Philos Trans R Soc Lond B Biol Sci. 2004; 359:765–776.CrossRef
68.
go back to reference Lin YC, Grigoriev NG, Spencer AN. Wound healing in jellyfish striated muscle involves rapid switching between two modes of cell motility and a change in the source of regulatory calcium. Dev Biol. 2000; 225:87–100.CrossRef Lin YC, Grigoriev NG, Spencer AN. Wound healing in jellyfish striated muscle involves rapid switching between two modes of cell motility and a change in the source of regulatory calcium. Dev Biol. 2000; 225:87–100.CrossRef
69.
go back to reference Nodder S, Martin P. Wound healing in embryos: a review. Anat Embryol (Berl). 1997; 195:215–228.CrossRef Nodder S, Martin P. Wound healing in embryos: a review. Anat Embryol (Berl). 1997; 195:215–228.CrossRef
70.
go back to reference Mescher AL, Neff AW. Regenerative capacity and the developing immune system. Adv Biochem Eng Biotechnol. 2005; 93:39–66. Mescher AL, Neff AW. Regenerative capacity and the developing immune system. Adv Biochem Eng Biotechnol. 2005; 93:39–66.
71.
go back to reference Flajnik MF, Kasahara M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity. 2001; 15:351–362.CrossRef Flajnik MF, Kasahara M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity. 2001; 15:351–362.CrossRef
72.
go back to reference Fahmy GH, Sicard RE. A role for effectors of cellular immunity in epimorphic regeneration of amphibian limbs. In Vivo. 2002; 16:179–184. Fahmy GH, Sicard RE. A role for effectors of cellular immunity in epimorphic regeneration of amphibian limbs. In Vivo. 2002; 16:179–184.
73.
go back to reference Tsonis PA, Del Rio-Tsonis K, Wallace JL, Burns JC, Hofmann MC, Millan JL, Washabaugh CH. Can insights into urodele limb regeneration be achieved with cell cultures and retroviruses? Int J Dev Biol. 1996; 40:813–816. Tsonis PA, Del Rio-Tsonis K, Wallace JL, Burns JC, Hofmann MC, Millan JL, Washabaugh CH. Can insights into urodele limb regeneration be achieved with cell cultures and retroviruses? Int J Dev Biol. 1996; 40:813–816.
74.
go back to reference Plytycz B, Seljelid R. MHC molecules and lymphocytes: evolutionary perspective. Arch Immunol Ther Exp (Warsz). 1998; 46:137–142. Plytycz B, Seljelid R. MHC molecules and lymphocytes: evolutionary perspective. Arch Immunol Ther Exp (Warsz). 1998; 46:137–142.
75.
go back to reference Hantash BM, Zhao L, Knowles JA, Lorenz HP. Adult and fetal wound healing. Front Biosci. 2008; 13:51–61.CrossRef Hantash BM, Zhao L, Knowles JA, Lorenz HP. Adult and fetal wound healing. Front Biosci. 2008; 13:51–61.CrossRef
76.
go back to reference Colwell AS, Longaker MT, Lorenz HP. Fetal wound healing. Front Biosci. 2003; 8:s1240–s1248.CrossRef Colwell AS, Longaker MT, Lorenz HP. Fetal wound healing. Front Biosci. 2003; 8:s1240–s1248.CrossRef
77.
go back to reference Hopkinson-Woolley J, Hughes D, Gordon S, Martin P. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci. 1994; 107(Pt 5):1159–1167. Hopkinson-Woolley J, Hughes D, Gordon S, Martin P. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci. 1994; 107(Pt 5):1159–1167.
78.
go back to reference Muneoka K, Sassoon D. Molecular aspects of regeneration in developing vertebrate limbs. Dev Biol. 1992; 152:37–49.CrossRef Muneoka K, Sassoon D. Molecular aspects of regeneration in developing vertebrate limbs. Dev Biol. 1992; 152:37–49.CrossRef
79.
go back to reference Holder N, Bryant SV, Tank PW. Interactions between irradiated and unirradiated tissues during supernumerary limb formation in the newt. J Exp Zool. 1979; 208:303–310.CrossRef Holder N, Bryant SV, Tank PW. Interactions between irradiated and unirradiated tissues during supernumerary limb formation in the newt. J Exp Zool. 1979; 208:303–310.CrossRef
80.
go back to reference Polezhaev LV. Regeneration of the fingers in children. Khirurgiia (Mosk). 1980; 12:76–77. Polezhaev LV. Regeneration of the fingers in children. Khirurgiia (Mosk). 1980; 12:76–77.
81.
go back to reference Globus M, Alles P. A search for immunoreactive substance P and other neural peptides in the limb regenerate of the newt Notophthalmus viridescens. J Exp Zool. 1990; 254:165–176.CrossRef Globus M, Alles P. A search for immunoreactive substance P and other neural peptides in the limb regenerate of the newt Notophthalmus viridescens. J Exp Zool. 1990; 254:165–176.CrossRef
82.
go back to reference Page-McCaw A. Remodeling the model organism: matrix metalloproteinase functions in invertebrates. Semin Cell Dev Biol. 2008; 19:14–23.CrossRef Page-McCaw A. Remodeling the model organism: matrix metalloproteinase functions in invertebrates. Semin Cell Dev Biol. 2008; 19:14–23.CrossRef
83.
go back to reference Ghahary A, Ghaffari A. Role of keratinocyte–fibroblast cross-talk in development of hypertrophic scar. Wound Repair Regen. 2007; 15(Suppl 1):S46–S53.CrossRef Ghahary A, Ghaffari A. Role of keratinocyte–fibroblast cross-talk in development of hypertrophic scar. Wound Repair Regen. 2007; 15(Suppl 1):S46–S53.CrossRef
84.
go back to reference Akerman B, Haegerstam G, Pring BG, Sandberg R. Penetration enhancers and other factors governing percutaneous local anaesthesia with lidocaine. Acta Pharmacol Toxicol (Copenh). 1979; 45:58–65.CrossRef Akerman B, Haegerstam G, Pring BG, Sandberg R. Penetration enhancers and other factors governing percutaneous local anaesthesia with lidocaine. Acta Pharmacol Toxicol (Copenh). 1979; 45:58–65.CrossRef
85.
go back to reference Peled ZM, Phelps ED, Updike DL, Chang J, Krummel TM, Howard EW, Longaker MT. Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconstr Surg. 2002; 110:801–811.CrossRef Peled ZM, Phelps ED, Updike DL, Chang J, Krummel TM, Howard EW, Longaker MT. Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconstr Surg. 2002; 110:801–811.CrossRef
86.
go back to reference Harty M, Neff AW, King MW, Mescher AL. Regeneration or scarring: an immunologic perspective. Dev Dyn. 2003; 226:268–279.CrossRef Harty M, Neff AW, King MW, Mescher AL. Regeneration or scarring: an immunologic perspective. Dev Dyn. 2003; 226:268–279.CrossRef
87.
go back to reference Adzick NS, Lorenz HP. Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann Surg. 1994; 220:10–18.CrossRef Adzick NS, Lorenz HP. Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann Surg. 1994; 220:10–18.CrossRef
88.
go back to reference Burkly LC, Michaelson JS, Hahm K, Jakubowski A, Zheng TS. TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease. Cytokine. 2007; 40:1–16.CrossRef Burkly LC, Michaelson JS, Hahm K, Jakubowski A, Zheng TS. TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease. Cytokine. 2007; 40:1–16.CrossRef
89.
go back to reference Brockes JP, Kumar A, Velloso CP. Regeneration as an evolutionary variable. J Anat. 2001; 199:3–11.CrossRef Brockes JP, Kumar A, Velloso CP. Regeneration as an evolutionary variable. J Anat. 2001; 199:3–11.CrossRef
90.
go back to reference Bischoff M, Schnabel R. A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo by a Wnt-dependent relay mechanism. PLoS Biol. 2006; 4:e396.CrossRef Bischoff M, Schnabel R. A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo by a Wnt-dependent relay mechanism. PLoS Biol. 2006; 4:e396.CrossRef
91.
go back to reference Schaller HC, Hoffmeister SA, Dubel S. Role of the neuropeptide head activator for growth and development in hydra and mammals. Development. 1989; 107(Suppl):99–107. Schaller HC, Hoffmeister SA, Dubel S. Role of the neuropeptide head activator for growth and development in hydra and mammals. Development. 1989; 107(Suppl):99–107.
92.
go back to reference MacWilliams HK. Hydra transplantation phenomena and the mechanism of Hydra head regeneration. II. Properties of the head activation. Dev Biol. 1983; 96:239–257.CrossRef MacWilliams HK. Hydra transplantation phenomena and the mechanism of Hydra head regeneration. II. Properties of the head activation. Dev Biol. 1983; 96:239–257.CrossRef
93.
go back to reference Shenk MA, Gee L, Steele RE, Bode HR. Expression of Cnox-2, a HOM/HOX gene, is suppressed during head formation in hydra. Dev Biol. 1993; 160:108–118.CrossRef Shenk MA, Gee L, Steele RE, Bode HR. Expression of Cnox-2, a HOM/HOX gene, is suppressed during head formation in hydra. Dev Biol. 1993; 160:108–118.CrossRef
94.
go back to reference Marsh HG, Beams HW. Electrical control of morphogenesis in regenerating Dugesia tigrina. I. Relation of axial polarity to field strength. J Cell Physiol. 1952; 39:191–213.CrossRef Marsh HG, Beams HW. Electrical control of morphogenesis in regenerating Dugesia tigrina. I. Relation of axial polarity to field strength. J Cell Physiol. 1952; 39:191–213.CrossRef
95.
go back to reference Slack JM. Inducing factors in Xenopus early embryos. Curr Biol. 1994; 4:116–126.CrossRef Slack JM. Inducing factors in Xenopus early embryos. Curr Biol. 1994; 4:116–126.CrossRef
96.
go back to reference Stocum DL, Crawford K. Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochem Cell Biol. 1987; 65:750–761.CrossRef Stocum DL, Crawford K. Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochem Cell Biol. 1987; 65:750–761.CrossRef
97.
go back to reference Thesleff I, Jarvinen E, Suomalainen M. Affecting tooth morphology and renewal by fine-tuning the signals mediating cell and tissue interactions. Novartis Found Symp. 2007; 284:142–153.CrossRef Thesleff I, Jarvinen E, Suomalainen M. Affecting tooth morphology and renewal by fine-tuning the signals mediating cell and tissue interactions. Novartis Found Symp. 2007; 284:142–153.CrossRef
98.
go back to reference Li S, Muneoka K. Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. Dev Biol. 1999; 211:335–347.CrossRef Li S, Muneoka K. Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. Dev Biol. 1999; 211:335–347.CrossRef
99.
go back to reference Hammerschmidt M, Brook A, McMahon AP. The world according to hedgehog. Trends Genet. 1997; 13:14–21.CrossRef Hammerschmidt M, Brook A, McMahon AP. The world according to hedgehog. Trends Genet. 1997; 13:14–21.CrossRef
100.
go back to reference Zardoya R, Abouheif E, Meyer A. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish. Proc Natl Acad Sci U S A. 1996; 93:13036–13041.CrossRef Zardoya R, Abouheif E, Meyer A. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish. Proc Natl Acad Sci U S A. 1996; 93:13036–13041.CrossRef
101.
go back to reference Reginelli AD, Wang YQ, Sassoon D, Muneoka K. Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development. 1995; 121:1065–1076. Reginelli AD, Wang YQ, Sassoon D, Muneoka K. Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development. 1995; 121:1065–1076.
102.
go back to reference Wanek N, Gardiner DM, Muneoka K, Bryant SV. Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature. 1991; 350:81–83.CrossRef Wanek N, Gardiner DM, Muneoka K, Bryant SV. Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature. 1991; 350:81–83.CrossRef
103.
go back to reference Javois LC, Iten LE, Murphy DJ. Formation of supernumerary structures by the embryonic chick wing depends on the position and orientation of a graft in a host limb bud. Dev Biol. 1981; 82:343–349.CrossRef Javois LC, Iten LE, Murphy DJ. Formation of supernumerary structures by the embryonic chick wing depends on the position and orientation of a graft in a host limb bud. Dev Biol. 1981; 82:343–349.CrossRef
104.
go back to reference Bryant SV, Iten LE. Intercalary and supernumerary regeneration in regenerating the mature limbs of Notophthalmus viridescens. J Exp Zool. 1977; 202:1–16.CrossRef Bryant SV, Iten LE. Intercalary and supernumerary regeneration in regenerating the mature limbs of Notophthalmus viridescens. J Exp Zool. 1977; 202:1–16.CrossRef
105.
go back to reference French V, Rowlands TF. Regeneration in the anterior–posterior axis of the insect thoracic segment. J Embryol Exp Morphol. 1986; 98:137–165. French V, Rowlands TF. Regeneration in the anterior–posterior axis of the insect thoracic segment. J Embryol Exp Morphol. 1986; 98:137–165.
106.
go back to reference Wolpert L. Positional information and pattern formation. Curr Top Dev Biol. 1971; 6:183–224.CrossRef Wolpert L. Positional information and pattern formation. Curr Top Dev Biol. 1971; 6:183–224.CrossRef
107.
go back to reference Ventegodt S, Hermansen TD, Flensborg-Madsen T, Nielsen ML, Merrick J. Human development VI: supracellular morphogenesis. The origin of biological and cellular order. ScientificWorldJournal. 2006; 6:1424–1433.CrossRef Ventegodt S, Hermansen TD, Flensborg-Madsen T, Nielsen ML, Merrick J. Human development VI: supracellular morphogenesis. The origin of biological and cellular order. ScientificWorldJournal. 2006; 6:1424–1433.CrossRef
108.
109.
go back to reference Lefort K, Dotto GP. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin Cancer Biol. 2004; 14:374–386.CrossRef Lefort K, Dotto GP. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin Cancer Biol. 2004; 14:374–386.CrossRef
110.
go back to reference Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 2005; 19:1485–1495.CrossRef Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 2005; 19:1485–1495.CrossRef
111.
go back to reference Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev. 2007; 21:562–577.CrossRef Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev. 2007; 21:562–577.CrossRef
112.
go back to reference Petitjean A, Ruptier C, Tribollet V, Hautefeuille A, Chardon F, Cavard C, Puisieux A, Hainaut P, Caron de FC. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. Carcinogenesis. 2008; 29:273–281.CrossRef Petitjean A, Ruptier C, Tribollet V, Hautefeuille A, Chardon F, Cavard C, Puisieux A, Hainaut P, Caron de FC. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. Carcinogenesis. 2008; 29:273–281.CrossRef
113.
go back to reference Nguyen BC, Lefort K, Mandinova A, Antonini D, Devgan V, Della GG, Koster MI, Zhang Z, Wang J, Tommasi diVA, Kitajewski J, Chiorino G, Roop DR, Missero C, Dotto GP. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006; 20:1028–1042.CrossRef Nguyen BC, Lefort K, Mandinova A, Antonini D, Devgan V, Della GG, Koster MI, Zhang Z, Wang J, Tommasi diVA, Kitajewski J, Chiorino G, Roop DR, Missero C, Dotto GP. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006; 20:1028–1042.CrossRef
114.
go back to reference Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C, Neel V, Dummer R, Wagner EF, Dotto GP. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol. 2008; 10:902–911.CrossRef Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C, Neel V, Dummer R, Wagner EF, Dotto GP. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol. 2008; 10:902–911.CrossRef
Metadata
Title
The Emperor’s New Body: Seeking for a Blueprint of Limb Regeneration in Humans
Authors
Ilya Digel
Aysegül Temiz Artmann
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-11865-4_1